Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique
Abstract
1. Introduction
2. Experimental Procedure and Parameter Calculation
2.1. Experimental Procedure
2.2. Parameter Calculation
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Walther, M.; Plochocka, P.; Fischer, B.; Helm, H.; Uhd Jepsen, P. Collective vibrational modes in biological molecules investigated by terahertz time-domain spectroscopy. Biopolymers 2010, 67, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Son, J.H. Terahertz electromagnetic interactions with biological matter and their applications. J. Appl. Phys. 2009, 105, 102033. [Google Scholar] [CrossRef]
- Wenjun, Z.; Brooks, B.R.; Thirumalai, D. Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations. Proc. Natl. Acad. Sci. USA 2006, 103, 7664–7669. [Google Scholar]
- Ferguson, B.; Zhang, X.C. Materials for terahertz science and technology. Physics 2003, 1, 26–33. [Google Scholar]
- Dexheimer, S.L. Terahertz Spectroscopy: Principles and Applications; Cambridge University Press: Cambridge, UK, 2007; pp. 198–209. [Google Scholar]
- Christian, J.; Steffen, W.; Ole, P.; Maik, S.; Nico, V.; Mohammed, S.; Norman, K.; Christian, J.; Thomas, H.; Martin, K. Terahertz imaging: Applications and perspectives. Appl. Opt. 2010, 49, 48–57. [Google Scholar]
- Xiang, Y.; Xiang, Z.; Ke, Y.; Liu, Y.; Yu, L.; Fu, W.; Yang, L. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar]
- Nibali, V.C.; Havenith, M. New Insights into the Role of Water in Biological Function: Studying Solvated Biomolecules Using Terahertz Absorption Spectroscopy in Conjunction with Molecular Dynamics Simulations. J. Am. Chem. Soc. 2014, 136, 12800–12807. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.W.; Zhong, J.L.; Zuo, J.; Zhang, C.L.; Dan, G. Principal component analysis of terahertz spectrum on hemagglutinin protein and its antibody. Acta Phys. Sin. 2015, 64, 448–454. [Google Scholar]
- Shi, C.; Ma, Y.; Zhang, J.; Wei, D.; Wang, H.; Peng, X.; Tang, M.; Yan, S.; Zuo, G.; Du, C. Terahertz time-domain spectroscopy of chondroitin sulfate. Biomed. Opt. Express 2018, 9, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhao, D.B.; Jiang, L.; Xu, L.; Sun, H.J.; Liu, Y.F. Research on THz and Raman spectra of RNA nucleobases. Spectrosc. Spectr. Anal. 2016, 36, 3863–3869. [Google Scholar]
- Li, Y.B. Study on Terahertz Spectroscopy of Amino Acids; Capital Normal University: Beijing, China, 2006. [Google Scholar]
- Shen, Y.C.; Upadhya, P.C.; Linfield, E.H.; Beere, H.E.; Davies, A.G. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters. Appl. Phys. Lett. 2003, 83, 3117–3119. [Google Scholar] [CrossRef]
- Thomson, M.D.; Volker, B.; Roskos, H.G. Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Opt. Express 2010, 18, 23173–23182. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.C.; Upadhya, P.C.; Beere, H.E.; Linfield, E.H.; Davies, A.G.; Gregory, I.S.; Baker, C.; Tribe, W.R.; Evans, M.J. Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers. Appl. Phys. Lett. 2004, 85, 164–166. [Google Scholar] [CrossRef]
- Jin, Q.; Liu, J.; Wang, K.; Yang, Z.; Wang, S.; Ye, K. Oscillation effect in frequency domain current from a photoconductive antenna via double-probe-pulse terahertz detection technique. Front. Optoelectron. 2015, 8, 104–109. [Google Scholar] [CrossRef]
- Lu, Z.G.; Campbell, P.; Zhang, X.C. Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser. Appl. Phys. Lett. 1997, 71, 593–595. [Google Scholar] [CrossRef]
- Ilyakov, I.E.; Kitaeva, G.K.; Shishkin, B.V.; Akhmedzhanov, R.A. Electro-optic sampling of terahertz waves by laser pulses with an edge-cut spectrum in birefringent crystal. Opt. Lett. 2017, 42, 1704–1707. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.M.; Peng, X.Y.; Xiao-Hui, M.A.; Liu, Y.; Wei, D.S.; Cui, H.L.; Chun-Lei, D.U. Progress of Detection Technology of Ultra-Broadband THz Time-Domain Spectroscopy. Spectrosc. Spectr. Anal. 2016, 36, 1277–1283. [Google Scholar]
- Dai, J.; Liu, J.; Zhang, X.C. Terahertz Wave Air Photonics: Terahertz Wave Generation and Detection With Laser-Induced Gas Plasma. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 183–190. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.C. Balanced terahertz wave air-biased-coherent-detection. Appl. Phys. Lett. 2011, 98, 151111–151113. [Google Scholar] [CrossRef]
- He, J.; Mu, K.; Yang, H.; Hou, D.; Ma, S.; Shi, X. Experimental Study of Super-bBoadband Terahertz Coherent Detection with Air Plasma. Laser Optoelectron. Prog. 2013, 50, 202–206. [Google Scholar]
- Francesco, D.A.; Zoltán, M.; Mischa, B.; Dmitry, T. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Opt. Express 2014, 22, 12475–12485. [Google Scholar]
- Zhang, L.; Huang, S.; Zhang, C.L. Terahertz Spectroscopy Investigation of Substrate Materials for Biological Application in the Frequency Range of 1~15THz. Spectrosc. Spectr. Anal. 2017, 37, 346–349. [Google Scholar]
- Abu Amous, B.; Rui, F.; Nandi, A.K. Central Dogma of Molecular Biology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1970; pp. 561–563. [Google Scholar]
- Fischer, B.M.; Walther, M.; Jepsen, P.U. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys. Med. Biol. 2002, 47, 3807–3814. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Yamada, T.; Sasaki, T.; Tanabe, T.; Suto, K.; Nishizawa, J.I.; Kimura, T. THz transmittance measurements of nucleobases and related molecules in the 0.4- to 5.8-THz region using a GaP THz wave generator. Opt. Commun. 2005, 246, 229–239. [Google Scholar]
- Wang, F.; Zhao, D.; Dong, H.; Jiang, L.; Liu, Y.; Li, S. Terahertz spectra of DNA nucleobase crystals: A joint experimental and computational study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 179, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Hui, Y.; Fan, W.H.; Zheng, Z.P.; Jia, L. Terahertz Spectroscopy of DNA Nucleobases:Cytosine and Thymine. Spectrosc. Spectr. Anal. 2013, 33, 2612–2616. [Google Scholar]
- Yoo, Y.J.; Kuk, D.; Zhong, Z.; Kim, K.Y. Generation and Characterization of Strong Terahertz Fields from kHz Laser Filamentation. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–7. [Google Scholar] [CrossRef]
- Mickan, S.P.; Zhang, X.C. T-Ray Sensing and Imaging. Int. J. High Speed Electron. Syst. 2003, 13, 601–676. [Google Scholar] [CrossRef]
- Zheng, Z.P.; Fan, W.H.; Li, H.; Tang, J. Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory. J. Mol. Spectrosc. 2014, 296, 9–13. [Google Scholar] [CrossRef]
- Bánhegyi, G. Numerical analysis of complex dielectric mixture formulae. Colloid Polym. Sci. 1988, 266, 11–28. [Google Scholar] [CrossRef]
- Papari, G.P.; Gargiulo, V.; Alfè, M.; Capua, R.D.; Pezzella, A.; Andreone, A. THz spectroscopy on graphene-like materials for bio-compatible devices. J. Appl. Phys. 2017, 121, 145107. [Google Scholar] [CrossRef]
- Wang, M.-W.; Woo, B.K.; Tian, Z.; Han, J.-G.; Chen, W.; Zhang, W.-L. Study of optical and dielectric properties of annealed ZnO nanoparticles in the terahertz regime. Optoelectron. Lett. 2009, 5, 430–433. [Google Scholar] [CrossRef]
- Thamizhmani, L.; Azad, A.K.; Dai, J.; Zhang, W. Far-infrared optical and dielectric response of ZnS measured by terahertz time-domain spectroscopy. Appl. Phys. Lett. 2005, 86, 229. [Google Scholar] [CrossRef]
- Han, J.; Azad, A.K.; Zhang, W. Far-Infrared Characteristics of Bulk and Nanostructured Wide-Bandgap Semiconductors. J. Nanoelectron. Optoelectron. 2007, 2, 222–233. [Google Scholar] [CrossRef]
- Duvillaret, L.; Garet, F.; Coutaz, J.L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2002, 2, 739–746. [Google Scholar] [CrossRef]
- Pupeza, I.; Wilk, R.; Koch, M. Highly accurate optical material parameter determination with THz time-domain spectroscopy. Opt. Express 2007, 15, 4335–4350. [Google Scholar] [CrossRef] [PubMed]
- Zaytsev, K.I.; Gavdush, A.A.; Karasik, V.E.; Alekhnovich, V.I. Accuracy of sample material parameters reconstruction using terahertz pulsed spectroscopy. J. Appl. Phys. 2014, 115, 101–2728. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Sengupta, A.; Barat, R.B.; Gary, D.E.; Federici, J.F.; Chen, M.; Tanner, D.B. Effects of Scattering on THz Spectra of Granular Solids. Int. J. Infrared Millim. Waves 2007, 28, 969–978. [Google Scholar] [CrossRef]
- Zhi, L.I.; Zhang, Z.H.; Zhao, X.Y.; Hai-Xia, S.U. Extracting THz Absorption Coefficient Spectrum Based on Accurate Determination of Sample Thickness. Spectrosc. Spectr. Anal. 2012, 32, 1043–1046. [Google Scholar]
- Zhang, W.; Brown, E.R.; Rahman, M.; Norton, M.L. Observation of terahertz absorption signatures in microliter DNA solutions. Appl. Phys. Lett. 2013, 102, 219–223. [Google Scholar] [CrossRef]
Sample Name | Sample Ingredient | Mass Ratio (%) | Thickness (mm) | |
---|---|---|---|---|
80 mg | A | Pure adenine | 100 | 0.594 |
G | Pure guanine | 0.588 | ||
C | Pure cytosine | 0.600 | ||
T | Pure thymine | 0.589 | ||
U | Pure uracil | 0.597 | ||
50 mg | A | Pure adenine | 100 | 0.320 |
G | Pure guanine | 0.311 | ||
C | Pure cytosine | 0.307 | ||
T | Pure thymine | 0.340 | ||
U | Pure uracil | 0.319 | ||
20 mg | A | Mixture of 20 mg adenine and 60 mg PE | 25 | 0.629 |
G | Mixture of 20 mg guanine and 60 mg PE | 0.634 | ||
C | Mixture of 20 mg cytosine and 60 mg PE | 0.626 | ||
T | Mixture of 20 mg thymine and 60 mg PE | 0.639 | ||
U | Mixture of 20 mg uracil and 60 mg PE | 0.633 | ||
PE | Pure PE 60 mg | 0.508 |
A | THz-ABCD | 1.70 | 2.15 | 2.50 | 3.10 | 4.10 | 5.60 | 6.00 | 7.30 | ||||
TDS [26] | 1.7 | 2.2 | 3.1 | ||||||||||
TDS [27] | 1.67 | 2.11 | 2.54 | 3.05 | 3.44 | 3.89 | 4.18 | ||||||
TDS [28] | 1.75 | 2.09 | 2.5 | ||||||||||
G | THz-ABCD | 2.50 | 3.00 | 4.30 | 4.80 | 5.35 | 6.30 | 7.20 | 9.80 | ||||
TDS [26] | 2.5 | 2.9 | |||||||||||
TDS [27] | 2.57 | 3.00 | 4.31 | 4.84 | 5.44 | ||||||||
TDS [28] | 2.52 | 2.99 | |||||||||||
C | THz-ABCD | 1.55 | 2.75 | 3.40 | 4.35 | 4.75 | 5.95 | 6.95 | |||||
TDS [26] | 1.6 | 2.7 | 3.3 | ||||||||||
TDS [27] | 1.60 | 2.85 | 3.39 | 4.32 | 5.30 | ||||||||
TDS [28] | 1.59 | 2.73 | |||||||||||
TDS [29] | 1.55 | 2.53 | 2.72 | 3.25 | |||||||||
T | THz-ABCD | 1.30 | 2.25 | 2.95 | 4.50 | 5.10 | 6.30 | 8.50 | 9.60 | ||||
TDS [26] | 2.3 | 2.9 | |||||||||||
TDS [27] | 1.36 | 2.29 | 3.00 | 5.10 | |||||||||
TDS [28] | 2.07 | 2.29 | 2.82 | 2.94 | |||||||||
TDS [29] | 1.30 | 2.25 | 2.86 | 3.43 | |||||||||
U | THz-ABCD | 2.30 | 2.70 | 3.30 | 3.80 | 5.90 | |||||||
TDS [27] | 1.69 | 2.31 | 2.68 | 3.44 | 3.84 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Yan, S.; Sun, Y.-q.; Sheng, W.; Tang, F.; Peng, X.-y.; Hu, Y. Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique. Sensors 2019, 19, 1148. https://doi.org/10.3390/s19051148
Yu M, Yan S, Sun Y-q, Sheng W, Tang F, Peng X-y, Hu Y. Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique. Sensors. 2019; 19(5):1148. https://doi.org/10.3390/s19051148
Chicago/Turabian StyleYu, Miao, Shihan Yan, Yong-qiang Sun, Wang Sheng, Fu Tang, Xiao-yu Peng, and Yuan Hu. 2019. "Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique" Sensors 19, no. 5: 1148. https://doi.org/10.3390/s19051148
APA StyleYu, M., Yan, S., Sun, Y.-q., Sheng, W., Tang, F., Peng, X.-y., & Hu, Y. (2019). Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique. Sensors, 19(5), 1148. https://doi.org/10.3390/s19051148