Formation of Interstitial Hot-Spots Using the Reduced Gap-Size between Plasmonic Microbeads Pattern for Surface-Enhanced Raman Scattering Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Nanohole Pattern
2.2. Synthesis and Characterization of Silver Microbead Patterns (SMPs)
2.3. Surface-Enhanced Raman Scattering (SERS) Measurements
2.4. Calculation of SERS EF
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, T.; Wi, J.S.; Oh, A.; Na, H.K.; Lee, J.; Lee, K.; Lee, T.G.; Haam, S. Highly robust, uniform and ultra-sensitive surface-enhanced Raman scattering substrates for microRNA detection fabricated by using silver nanostructures grown in gold nanobowls. Nanoscale 2018, 10, 3680–3687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zheng, Y.; Liu, X.; Lu, W.; Dai, J.; Lei, D.Y.; MacFarlane, D.R. Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced Raman spectroscopy. Adv. Mater. 2015, 27, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, Z.; Peng, B.; Cao, C.; Zhang, C.; You, H.; Xiong, Q.; Li, Z.; Fang, J. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins. Adv. Mater. 2014, 26, 2431–2439. [Google Scholar] [CrossRef] [PubMed]
- Im, H.; Bantz, K.C.; Lee, S.H.; Johnson, T.W.; Haynes, C.L.; Oh, S.H. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing. Adv. Mater. 2013, 25, 2678–2685. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.X.; Xue, L.; Zhang, Y.F.; Li, D.W.; Long, Y.T. Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2015, 7, 2931–2936. [Google Scholar] [CrossRef] [PubMed]
- Son, J.G.; Han, S.W.; Wi, J.-S.; Lee, T.G. Guided formation of sub-5 nm interstitial gaps between plasmonic nanodisks. Nanoscale 2015, 7, 8338–8342. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhu, Z.; Liu, W.; Zhou, Y.; Han, B.; Gao, Y.; Tang, Z. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 2012, 134, 3322–3325. [Google Scholar] [CrossRef] [PubMed]
- Mistark, P.A.; Park, S.; Yalcin, S.E.; Lee, D.H.; Yavuzcetin, O.; Tuominen, M.T.; Russell, T.P.; Achermann, M. Block-copolymer-based plasmonic nanostructures. ACS Nano 2009, 3, 3987–3992. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhang, H.; Zhuang, J.; Yang, B.; Yang, W.; Li, T.; Sun, C. Sterically Mediated Two-Dimensional Architectures in Aggregates of Au Nanoparticles Directed by Phosphorothioate Oligonucleotide-DNA. Adv. Mater. 2005, 17, 2066–2070. [Google Scholar] [CrossRef]
- Qin, B.; Chen, H.; Liang, H.; Fu, L.; Liu, X.; Qiu, X.; Liu, S.; Song, R.; Tang, Z. Reversible photoswitchable fluorescence in thin films of inorganic nanoparticle and polyoxometalate assemblies. J. Am. Chem. Soc. 2010, 132, 2886–2888. [Google Scholar] [CrossRef] [PubMed]
- Hatab, N.A.; Hsueh, C.H.; Gaddis, A.L.; Retterer, S.T.; Li, J.H.; Eres, G.; Zhang, Z.; Gu, B. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 2010, 10, 4952–4955. [Google Scholar] [CrossRef] [PubMed]
- Chirumamilla, M.; Toma, A.; Gopalakrishnan, A.; Das, G.; Zaccaria, R.P.; Krahne, R.; Rondanina, E.; Leoncini, M.; Liberale, C.; De Angelis, F.; et al. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering. Adv. Mater. 2014, 26, 2353–2358. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, W.; Yan, W.; Larsen, M.B.; Boggild, P.; Pedersen, T.G.; Xiao, S.; Zi, J.; Mortensen, N.A. Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography. Nano Lett. 2014, 14, 2907–2913. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Ryu, J.; Kim, G.; Choi, K.-B.; Lee, S.; Lee, J. Nanoimprint lithography with a focused laser beam for the fabrication of nanopatterned microchannel molds. Lab on a Chip 2013, 13, 3188–3191. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, G.; Lee, J. Fabrication of a conductive nanoscale electrode for functional devices using nanoimprint lithography with printable metallic nanoink. Microelectron. Eng. 2010, 87, 839–842. [Google Scholar] [CrossRef]
- Wi, J.-S.; Son, J.G.; Han, S.W.; Lee, T.G. Nanoparticles inside nanodishes for plasmon excitations. Appl. Phys. Lett. 2015, 107, 203102. [Google Scholar] [CrossRef]
- Bang, D.; Chang, Y.W.; Park, J.; Lee, T.; Park, J.; Yeo, J.-S.; Kim, E.-K.; Yoo, K.-H.; Huh, Y.-M.; Haam, S. One-step electrochemical fabrication of vertically self-organized silver nanograss. J. Mater. Chem. A 2013, 1, 4851–4857. [Google Scholar] [CrossRef]
- Zhu, C.; Hu, X.; Wang, X. Silver nanocubes/graphene oxide hybrid film on a hydrophobic surface for effective molecule concentration and sensitive SERS detection. Appl. Surface Sci. 2019, 470, 423–429. [Google Scholar] [CrossRef]
- Hwang, J.; Yang, M. Sensitive and Reproducible Gold SERS Sensor Based on Interference Lithography and Electrophoretic Deposition. Sensors 2018, 18, 4076. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Pedireddy, S.; Lee, Y.H.; Hegde, R.S.; Tjiu, W.W.; Cui, Y.; Ling, X.Y. Precision synthesis: Designing hot spots over hot spots via selective gold deposition on silver octahedra edges. Small 2014, 10, 4940–4950. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.; Jung, S.; Kwon, S.; Kim, W.; Park, J.; Lim, H.; Lee, J. Formation of Interstitial Hot-Spots Using the Reduced Gap-Size between Plasmonic Microbeads Pattern for Surface-Enhanced Raman Scattering Analysis. Sensors 2019, 19, 1046. https://doi.org/10.3390/s19051046
Lee T, Jung S, Kwon S, Kim W, Park J, Lim H, Lee J. Formation of Interstitial Hot-Spots Using the Reduced Gap-Size between Plasmonic Microbeads Pattern for Surface-Enhanced Raman Scattering Analysis. Sensors. 2019; 19(5):1046. https://doi.org/10.3390/s19051046
Chicago/Turabian StyleLee, Taeksu, Sanghee Jung, Soongeun Kwon, Woochang Kim, Jinsung Park, Hyungjun Lim, and JaeJong Lee. 2019. "Formation of Interstitial Hot-Spots Using the Reduced Gap-Size between Plasmonic Microbeads Pattern for Surface-Enhanced Raman Scattering Analysis" Sensors 19, no. 5: 1046. https://doi.org/10.3390/s19051046
APA StyleLee, T., Jung, S., Kwon, S., Kim, W., Park, J., Lim, H., & Lee, J. (2019). Formation of Interstitial Hot-Spots Using the Reduced Gap-Size between Plasmonic Microbeads Pattern for Surface-Enhanced Raman Scattering Analysis. Sensors, 19(5), 1046. https://doi.org/10.3390/s19051046