A Three-Dimensional Hough Transform-Based Track-Before-Detect Technique for Detecting Extended Targets in Strong Clutter Backgrounds
Abstract
1. Introduction
2. Models
2.1. Preliminaries
2.2. Problem Statement
3. Hough Transform Based TBD Algorithm for Extended Targets
3.1. Introduction of the 3DHT-ET-TBD
3.2. Parameter Space Discretization
3.3. Iterative Line Detection and Post-Processing
4. Simulation Results
4.1. Synthetic Data
4.2. Real Data
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wei, L.; Zhang, X.; Fan, L. A TBD Algorithm Based on Improved Randomized Hough Transform for Dim Target Detection. In Proceedings of the 2010 2nd International Conference on Signal Processing Systems, Dalian, China, 5–7 July 2010. [Google Scholar]
- Errasti-Alcala, B.; Braca, P. Track before Detect Algorithm for Tracking Extended Targets Applied to Real-World Data of X-Band Marine Radar. In Proceedings of the 2014 17th International Conference on Fusion, Salamanca, Spain, 7–10 July 2014. [Google Scholar]
- Errasti-Alcala, B.; Fuscaldo, W.; Braca, P.; Vivone, G. Realistic Extended Target Model for Track before Detect in Maritime Surveillance. In Proceedings of the 2015 OCEANS—Genova, Genoa, Italy, 18–21 May 2015. [Google Scholar]
- Boers, Y.; Driessen, H.; Torstensson, J.; Trieb, M.; Karlsson, R.; Gustafsson, F. Track-before-Detect Algorithm for Tracking Extended Targets. IEE Proc. Radar Sonar Navig. 2006, 153, 345–351. [Google Scholar] [CrossRef]
- Wei, Y.; Morelande, M.R.; Lingjiang, K.; Jianyu, Y. An Efficient Multi-Frame Track-before-Detect Algorithm for Multi-Target Tracking. IEEE J. Sel. Top. Signal Process. 2013, 7, 421–434. [Google Scholar]
- Emanuele, G.; Lops, M.; Venturino, L. A Novel Dynamic Programming Algorithm for Track-Before-Detect in Radar Systems. IEEE Trans. Signal Process. 2013, 61, 2608–2619. [Google Scholar]
- Arnold, J.; Shaw, S.W.; Pasternack, H.E.N.R.I. Efficient Target Tracking using Dynamic Programming. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 44–56. [Google Scholar] [CrossRef]
- Richards, G.A. Application of the Hough Transform as a track-before-detect method. In Proceedings of the IEE Colloquium on Target Tracking and Data Fusion, Malvern, UK, 6–7 November 1996. [Google Scholar]
- Moyer, L.R.; Spak, J.; Lamanna, P. A Multi-Dimensional Hough Transform-Based Track-Before-Detect Technique for Detecting Weak Targets in Strong Clutter Backgrounds. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 3062–3068. [Google Scholar] [CrossRef]
- Yan, B.; Xu, L.; Li, M.; Yan, J.Z. A Track-Before-Detect Algorithm Based on Dynamic Programming for Multi-Extended-Targets Detection. IET Signal Process. 2017, 11, 674–686. [Google Scholar] [CrossRef]
- Lin, L.; Guohong, W.; Xiangyu, Z.; Hongbo, Y. The track initiation algorithm based on Hough Transform and space accumulation. In Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016; pp. 1466–1470. [Google Scholar]
- Alexiev, K.M.; Bojilov, L.V. A Hough Transform track initiation algorithm for multiple passive sensors. In Proceedings of the Third International Conference on Information Fusion, Paris, France, 10–13 July 2000; pp. TUB2/11–TUB2/16. [Google Scholar]
- Mukhopadhyay, P.; Chaudhuri, B.B. A survey of Hough Transform. Pattern Recognit. 2015, 48, 993–1010. [Google Scholar] [CrossRef]
- Sobhani, B.; Zwick, T.; Chiani, M. Target TOA association with the Hough Transform in UWB radars. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 743–754. [Google Scholar] [CrossRef]
- Granstrom, K.; Lundquist, C.; Orguner, O. Extended Target Tracking Using a Gaussian-Mixture PHD Filter. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 3268–3286. [Google Scholar] [CrossRef]
- Granstrom, K.; Orguner, U. On Spawning and Combination of Extended/Group Targets Modeled with Random Matrices. IEEE Trans. Signal Process. 2013, 61, 678–692. [Google Scholar] [CrossRef]
- Beard, M.; Reuter, S.; Granström, K.; Vo, B.T.; Vo, B.N.; Scheel, A. Multiple Extended Target Tracking with Labeled Random Finite Sets. IEEE Trans. Signal Process. 2016, 64, 1638–1653. [Google Scholar] [CrossRef]
- Mahler, R. Multi target Bayes Filtering via First-Order Multitarget Moments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1152–1178. [Google Scholar] [CrossRef]
- Mahler, R. PHD Filters for Nonstandard Targets, I: Extended targets. In Proceedings of the 12th International Conference on Information Fusion, Seattle, WA, USA, 6–9 July 2009. [Google Scholar]
- Gilholm, K.; Godsill, S.; Maskell, S. Poisson Models for Extended Target and Group Tracking. Int. Soc. Opt. Photonics 2005, 5913, 59130R. [Google Scholar]
- Koch, J.W. Bayesian Approach to Extended Object and Cluster Tracking using Random Matrices. IEEE Trans. Aerosp. Electron. Syst. 2008, 44, 1042–1059. [Google Scholar] [CrossRef]
- Musicki, D.; Evans, R. Joint Integrated Probabilistic Data Association: JIPDA. IEEE Trans. Aerosp. Electron. Syst. 2004, 40, 1093–1099. [Google Scholar] [CrossRef]
- Musicki, D.; La Scala, B.F.; Evans, R.J. Integrated Track Splitting Filter—Efficient Multi-scan Single Target Tracking in Clutter. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1409–1425. [Google Scholar]
- Puranik, S.; Tugnait, J.K. Tracking of Multiple Maneuvering Targets using Multiscan JPDA and IMM Filtering. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 23–35. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, R. Affinity Propagation Clustering of Measurements for Multiple Extended Target Tracking. Sensors 2015, 15, 22646–22659. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, H. A Robust and Fast Partitioning Algorithm for Extended Target Tracking using a Gaussian Inverse Wishart PHD Filter. Knowl.-Based Syst. 2016, 95, 125–141. [Google Scholar] [CrossRef]
- Dalitz, C.; Schramke, T.; Jeltsch, M. Iterative Hough Transform for Line Detection in 3D Point Clouds. IEEE Trans. Image Process. 2017, 7, 184–196. [Google Scholar] [CrossRef]
- Duda, R.O.; Hart, P.E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Ji, J.; Chen, G.; Sun, L. A Novel Hough Transform Method for Line Detection by Enhancing Accumulator Array. Pattern Recognit. Lett. 2011, 32, 1503–1510. [Google Scholar] [CrossRef]
- Xia, D.; Cha, H.; Xiao, C.; Lin, J. A New Hough Transform Applied in Track Initiation. In Proceedings of the IEEE International Conference on Consumer Electronics, Communications and Networks, XianNing China, 16–18 April 2011. [Google Scholar]
- Zhang, Y.; Su, X.; Ma, P. Multi-Hough Transform Track Initiation for Detecting Target with Constant Acceleration. In Proceedings of the IEEE Computer Society International Symposium on Information Science and Engieering, Shanghai, China, 20–22 December 2008. [Google Scholar]
- Yan, B.; Xu, L.P.; Yang, Y.; Li, C. Improved Plot Fusion Method for Dynamic Programming Based Track Before Detect Algorithm. AEU Int. J. Electron. Commun. 2017, 74, 31–43. [Google Scholar] [CrossRef]
- Yan, B.; Xu, L.P.; Yan, J.Z.H.; Li, C. An Efficient Extended Target Detection Method Based on Region Growing and Contour Tracking Algorithm. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2017, 232, 825–836. [Google Scholar] [CrossRef]
- Li, T. Single-Road-Constrained Positioning Based on Deterministic Trajectory Geometry. IEEE Commun. Lett. 2019, 23, 80–83. [Google Scholar] [CrossRef]
- Olson, C.F. Constrained Hough Transforms for Curve Detection. Comput. Vis. Image Underst. 1999, 73, 329–345. [Google Scholar] [CrossRef]
- Roberts, K.S. A New Representation for a Line. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Ann Arbor, MI, USA, 5–9 June 1988. [Google Scholar]
- Nadarajah, N.; Tharmarasa, R.; McDonald, M.; Kirubarajan, T. IMM Forward Filtering and Backward Smoothing for Maneuvering Target Tracking. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 2673–2678. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. K-means++: The advantages of careful seeding. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
Measurement Rate γ | Measurement Noise (m) | Number of Clutter Per Square (1/m2) | |
---|---|---|---|
Scenario 1 | 4 | 10 | 6 × 10−7 |
Scenario 2 | 4 | 50 | 6 × 10−7 |
Scenario 3 | 4 | 100 | 6 × 10−7 |
Scenario 4 | 4 | 50 | 1.2 × 10−6 |
Scenario 5 | 4 | 50 | 1.8 × 10−6 |
Scenario 6 | 2 | 10 | 6 × 10−7 |
Scenario 7 | 2 | 50 | 6 × 10−7 |
Scenario 8 | 2 | 100 | 6 × 10−7 |
Scenario 9 | 2 | 50 | 1.2 × 10−6 |
Scenario 10 | 2 | 50 | 1.8 × 10−6 |
3DHT-ET-TBD | 4DHT-TBD [14] | PHDF [15] + Distance [15] | PHDF [15] + AP [25] | PHDF [15] + ART [26] | PHDF [15] + Kmeans++ [38] | |
---|---|---|---|---|---|---|
Scenario 1 | 993.8 | 1791.0 | 1755.3 | 1529 | 1797.6 | 1976.5 |
Scenario 2 | 1530.8 | 2765.4 | 2467.6 | 1811.3 | 5725.1 | 2604.6 |
Scenario 3 | 2963.1 | 6450.5 | 6132.1 | 6029 | 6890.3 | 3956.7 |
Scenario 4 | 1327 | 2782.2 | 3188.4 | 1536.3 | 5108.9 | 2664.3 |
Scenario 5 | 1600.3 | 2820.9 | 4408.2 | 1628.5 | 4468.7 | 2924.1 |
Scenario 6 | 1232.3 | 2806.1 | 1540.3 | 2828.7 | 1156.2 | 5018.8 |
Scenario 7 | 2152.6 | 3747.7 | 3105.4 | 3571.2 | 6212.2 | 5183.4 |
Scenario 8 | 4303.5 | 6634.1 | 6063.6 | 4396.7 | 4665.5 | 4160 |
Scenario 9 | 2101.1 | 3155.8 | 4874.6 | 3279.5 | 3784.3 | 3017.4 |
Scenario 10 | 2336.5 | 3572.5 | 4861.1 | 3204.5 | 3929.1 | 3499 |
Measurement Rate γ | Probability of Detection and Survival | Covariance of Systematic Error | Covariance of Measuring Error (m,°) | Number of Clutter Per Squre (1/m2) | |
---|---|---|---|---|---|
Scenario 1 | 4 | (0.99,0.99) | 10 | (20, 1.17) | 6 × 10−7 |
Scenario 5 | 4 | (0.99,0.99) | 50 | (20, 1.17) | 1.8 × 10−6 |
Scenario 8 | 2 | (0.99,0.99) | 100 | (20, 1.17) | 6 × 10−7 |
Real data | 4 | (0.99,0.99) | 50 | (20, 1.17) | 6 × 10−7 |
Parameters in the 3DHT-ET-TBD | Parameter Values Used in the 4DHT | ||
---|---|---|---|
Number of bins in X axis Nx | 100 | Number of bins in X axis Nx | 100 |
Width of bins in X axis (m) | 160 | Width of bins in X axis (m) | 160 |
Number of bins in Y axis Ny | 100 | Number of bins in Y axis Ny | 100 |
Width of bins in Y axis (m) | 160 | Width of bins in Y axis (m) | 160 |
Minimum vote count | 30 | Minimum vote count | 30 |
Threshold of points d in Equation (16) | 160 | Threshold of points d in Equation (16) | 160 |
Length of sliding window | 7 | Length of sliding window | 7 |
Number of bins in 3D direction Nd | 541 | Number of bins in velocity Nv | 60 |
Width of bins in velocity (m/s) | 15 | ||
Number of bins in course Nc | 90 | ||
Width of bins in course (°) | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, B.; Xu, N.; Zhao, W.-B.; Xu, L.-P. A Three-Dimensional Hough Transform-Based Track-Before-Detect Technique for Detecting Extended Targets in Strong Clutter Backgrounds. Sensors 2019, 19, 881. https://doi.org/10.3390/s19040881
Yan B, Xu N, Zhao W-B, Xu L-P. A Three-Dimensional Hough Transform-Based Track-Before-Detect Technique for Detecting Extended Targets in Strong Clutter Backgrounds. Sensors. 2019; 19(4):881. https://doi.org/10.3390/s19040881
Chicago/Turabian StyleYan, Bo, Na Xu, Wen-Bo Zhao, and Lu-Ping Xu. 2019. "A Three-Dimensional Hough Transform-Based Track-Before-Detect Technique for Detecting Extended Targets in Strong Clutter Backgrounds" Sensors 19, no. 4: 881. https://doi.org/10.3390/s19040881
APA StyleYan, B., Xu, N., Zhao, W.-B., & Xu, L.-P. (2019). A Three-Dimensional Hough Transform-Based Track-Before-Detect Technique for Detecting Extended Targets in Strong Clutter Backgrounds. Sensors, 19(4), 881. https://doi.org/10.3390/s19040881