An Open Hardware Design for Internet of Things Power Quality and Energy Saving Solutions
Abstract
:1. Introduction
2. IoT Power Quality and Smart Meter Design
2.1. Hardware Structure of oZm
- Input rectifier: Rectifier diodes convert AC to DC, which must withstand at least twice the mains voltage. The device can be used, in safety conditions, up to 1000 V.
- Input filter: To prevent noise sources from spreading to the mains, and to stabilize the rectified voltage.
- Buck converter: Reduces the voltage to 22 V in order to offer up to 4.5 W.
- Secondary buck converter: The IC used has some limitations. The voltage must be set at 5 V, and this voltage must be stable. A second buck converter is used with the MCP16312 to obtain a stable voltage at 5 V, with low ripple and up to 1 A of current.
2.2. Real-Time PQ Monitoring and Smart Metering Software
- RMS values for voltage and current
- Active power, reactive power, and apparent power
- Phase between current and voltage
- Power factor
- Harmonics up to 50th for current and voltage
- Active energy and reactive energy
- Frequency
- Voltage events such swell, sags/dips, and interruptions
- Energy consumption and generation in four quadrants
- Operation in accordance with international standards IEC 61000-4-30 and EN-50160
- Aggregation for the voltage channel of 3 s, 1 min, 10 min, and 1 h as extra aggregation for energy metering purposes
- Alert system and event management (ITIC/CBEMA, frequency, etc.)
- Cutting-edge HTML, Javascript, and CSS3 technologies for a user-friendly dashboard interface
- API for third-party integration using JSON
3. Application and Results
3.1. Voltage Analysis
3.2. Current Analysis
3.3. Active and Reactive Power
3.4. Frequency
3.5. PQ Disturbances
3.6. Active and Reactive Energy Stats
3.7. Comparison with Commercial Power Analyzer
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paraskevakos, T. Sensor Monitoring Device. U.S. Patent 3,842,208, 15 October 1974. [Google Scholar]
- Uribe-Pérez, N.; Hernández, L.; de la Vega, D.; Angulo, I. State of the Art and Trends Review of Smart Metering in Electricity Grids. Appl. Sci. 2016, 6, 68. [Google Scholar] [CrossRef]
- Union, E. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:315:0001:0056:en:PDF (accessed on 12 January 2019).
- European Union. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Union: Brussels, Belgium, 2014. [Google Scholar]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Chu, C.C.; Iu, H.H.C. Complex networks theory for modern smart grid applications: A survey. IEEE J. Emerg. Sel. Top. Circuits Syst. 2017, 7, 177–191. [Google Scholar] [CrossRef]
- Zunnurain, I.; Maruf, M.; Rahman, M.; Shafiullah, G. Implementation of advanced demand side management for microgrid incorporating demand response and home energy management system. Infrastructures 2018, 3, 50. [Google Scholar] [CrossRef]
- Kakran, S.; Chanana, S. Smart operations of smart grids integrated with distributed generation: A review. Renew. Sustain. Energy Rev. 2018, 81, 524–535. [Google Scholar] [CrossRef]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, G.G.; Farhangi, H.; Palizban, A. Data mining of smart meters for load category based disaggregation of residential power consumption. Sustain. Energy Grids Netw. 2017, 10, 92–103. [Google Scholar] [CrossRef]
- Ribeiro, E.G.; Mendes, T.M.; Dias, G.L.; Faria, E.R.; Viana, F.M.; Barbosa, B.H.; Ferreira, D.D. Real-time system for automatic detection and classification of single and multiple power quality disturbances. Measurement 2018, 128, 276–283. [Google Scholar] [CrossRef]
- Sharma, K.; Saini, L.M. Performance analysis of smart metering for smart grid: An overview. Renew. Sustain. Energy Rev. 2015, 49, 720–735. [Google Scholar] [CrossRef]
- Yu, L.; Jiang, T.; Zou, Y. Distributed real-time energy management in data center microgrids. IEEE Trans. Smart Grid 2018, 9, 3748–3762. [Google Scholar] [CrossRef]
- Wang, J.M.; Yang, M.T.; Chen, P.L. Design and implementation of an intelligent windowsill system using smart handheld device and fuzzy microcontroller. Sensors 2017, 17, 830. [Google Scholar] [CrossRef] [PubMed]
- Ou, T.C.; Hong, C.M. Dynamic operation and control of microgrid hybrid power systems. Energy 2014, 66, 314–323. [Google Scholar] [CrossRef]
- Ou, T.C. Ground fault current analysis with a direct building algorithm for microgrid distribution. Int. J. Electr. Power Energy Syst. 2013, 53, 867–875. [Google Scholar] [CrossRef]
- Ou, T.C. A novel unsymmetrical faults analysis for microgrid distribution systems. Int. J. Electr. Power Energy Syst. 2012, 43, 1017–1024. [Google Scholar] [CrossRef]
- Esfahani, M.M.; Sheikh, A.; Mohammed, O. Adaptive real-time congestion management in smart power systems using a real-time hybrid optimization algorithm. Electr. Power Syst. Res. 2017, 150, 118–128. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. Electromagnetic Compability (EMC)—Part 4: Testing and Measurement Techniques—Power Quality Measurement Methods; International Electrotechnical Commission: Geneva, Switzerland, 2003; Volume 30. [Google Scholar]
- Shen, Y.; Hussain, F.; Liu, H.; Addis, D. Power quality disturbances classification based on curvelet transform. Int. J. Comput. Appl. 2017, 40, 1–10. [Google Scholar] [CrossRef]
- Niitsoo, J.; Jarkovoi, M.; Taklaja, P.; Klüss, J.; Palu, I. Power Quality Issues Concerning Photovoltaic Generation in Distribution Grids. Smart Grid Renew. Energy 2015, 2015. 6, 148–163. [Google Scholar] [CrossRef]
- Khadse, C.B.; Chaudhari, M.A.; Borghate, V.B. Conjugate gradient back-propagation based artificial neural network for real time power quality assessment. Int. J. Electr. Power Energy Syst. 2016, 82, 197–206. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, B.; Shahani, D.T.; Jain, C. Dual-Tree Complex Wavelet Transform-Based Control Algorithm for Power Quality Improvement in a Distribution System. IEEE Trans. Ind. Electron. 2017, 64, 764–772. [Google Scholar] [CrossRef]
- Li, D.; Yang, K.; Zhu, Z.Q.; Qin, Y. A Novel Series Power Quality Controller With Reduced Passive Power Filter. IEEE Trans. Ind. Electron. 2017, 64, 773–784. [Google Scholar] [CrossRef]
- Bubshait, A.S.; Mortezaei, A.; Simões, M.G.; Busarello, T.D.C. Power Quality Enhancement for a Grid Connected Wind Turbine Energy System. IEEE Trans. Ind. Appl. 2017, 53, 2495–2505. [Google Scholar] [CrossRef]
- IEEE Recommended Practice for Monitoring Electric Power Quality; IEEE Std 1159-2009 (Revision of IEEE Std 1159-1995); IEEE: New York, NY, USA, 2009. [CrossRef]
- Wan, Y.; Cao, J.; Zhang, H.; Zhu, Z.; Yao, S. Optimization of the power quality monitor number in Smart Grid. In Proceedings of the 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, Italy, 3–6 November 2014; pp. 230–235. [Google Scholar] [CrossRef]
- Mohibullah; Laskar, S.H. Power quality issues and need of intelligent PQ monitoring in the smart grid environment. In Proceedings of the 2012 47th International Universities Power Engineering Conference (UPEC), London, UK, 4–7 September 2012; pp. 1–6. [Google Scholar]
- Tang, Q.; Wang, Y.N.; Guo, S.y.; Jiang, F. Power quality disturbance classification based on S transform and Fourier transform. J. Hunan Univ. (Nat. Sci.) 2009, 4, 009. [Google Scholar]
- Moravej, Z.; Abdoos, A.; Pazoki, M. Detection and classification of power quality disturbances using wavelet transform and support vector machines. Electr. Power Compon. Syst. 2009, 38, 182–196. [Google Scholar] [CrossRef]
- Wang, F.; Jin, Z.; Zhu, Z.; Wang, X. Application of extended Kalman filter to the modeling of electric arc furnace for power quality issues. In Proceedings of the IEEE International Conference on Neural Networks and Brain, ICNN&B’05, Beijing, China, 13–15 October 2005; Volume 2, pp. 991–996. [Google Scholar]
- Hu, G.; Li, R.; Zheng, J.; Tao, L. Power quality disturbance based on Gabor-Wigner transform. J. Ingormation Comput. Sci. 2015, 12, 329–337. [Google Scholar] [CrossRef]
- Yalcin, T.; Ozgonenel, O.; Kurt, U. Multi-class power quality disturbances classification by using ensemble empirical mode decomposition based SVM. In Proceedings of the 2011 7th International Conference on IEEE Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 1–4 December 2011; pp. 1–122. [Google Scholar]
- Shen, Y.; Wu, H.; Liu, G.; Liu, H.; Zhang, H.; Xia, W. Study on identification of power quality disturbances based on compressive sensing. In Proceedings of the 2014 11th World Congress on. IEEE Intelligent Control and Automation (WCICA), Shenyang, China, 29 June–4 July 2014; pp. 5550–5555. [Google Scholar]
- Shaik, S.; Babu, U.R.; Subhani, S. Detection and classification of power quality disturbances: Using curvelet transform and support vector machines. In Proceedings of the 2016 International Conference on IEEE Information Communication and Embedded Systems (ICICES), Chennai, India, 25–26 February 2016; pp. 1–8. [Google Scholar]
- Liu, W.W.; Jiang, X.Y.; Cai, H.; Yuan, C.B. Power quality disturbance classification based on Hilbert transform and classification trees. Electr. Meas. Instrum. 2010, 11, 006. [Google Scholar]
- Cai, Z.; Ning, F.; Li, W.; Gulliver, T.A. Power quality signal analysis for the smart grid using the Hilbert-Huang transform. In Proceedings of the 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 27–29 August 2013; pp. 296–301. [Google Scholar]
- López-Lopera, A.F.; Álvarez, M.A.; Orozco, Á.Á. Sparse linear models applied to power quality disturbance classification. In Iberoamerican Congress on Pattern Recognition; Springer: Berlin, Germany, 2016; pp. 521–529. [Google Scholar]
- Abdoos, A.A.; Mianaei, P.K.; Ghadikolaei, M.R. Combined VMD-SVM based feature selection method for classification of power quality events. Appl. Soft Comput. 2016, 38, 637–646. [Google Scholar] [CrossRef]
- Adhikari, S.; Sinha, N.; Dorendrajit, T. Fuzzy logic based on-line fault detection and classification in transmission line. SpringerPlus 2016, 5, 1002. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Xiao, L.; Chen, K.; Wu, J. Classification of power quality disturbances via deep learning. IETE Tech. Rev. 2017, 34, 408–415. [Google Scholar] [CrossRef]
- Liu, H.; Hussain, F.; Shen, Y. Power quality disturbances classification using compressive sensing and maximum likelihood. IETE Tech. Rev. 2017, 35, 359–368. [Google Scholar] [CrossRef]
- Montoya, F.G.; Alcayde, A.; Sánchez, P.; Gómez, J.; Martín, F. zEnergy: An open source project for power quality assessment and monitoring. In Proceedings of the 2011 International Conference on Power Engineering, Energy and Electrical Drives, Malaga, Spain, 11–13 May 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Vallés, M.; Reneses, J.; Cossent, R.; Frías, P. Regulatory and market barriers to the realization of demand response in electricity distribution networks: A European perspective. Electr. Power Syst. Res. 2016, 140, 689–698. [Google Scholar] [CrossRef]
- Viciana, E.; Alcayde, A.; Montoya, F.; Baños, R.; Arrabal-Campos, F.; Zapata-Sierra, A.; Manzano-Agugliaro, F. OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer. Sustainability 2018, 10, 4038. [Google Scholar] [CrossRef]
- Charras, J.P. Kicad: GPL PCB Suite. Available online: http://www.kicad-pcb.org (accessed on 12 January 2019).
- Frigo, M.; Johnson, S.G. The design and implementation of FFTW3. Proc. IEEE 2005, 93, 216–231. [Google Scholar] [CrossRef]
- Volgyesi, P.; Dubey, A.; Krentz, T.; Madari, I.; Metelko, M.; Karsai, G. Time synchronization services for low-cost fog computing applications. In Proceedings of the 28th International Symposium on Rapid System Prototyping: Shortening the Path from Specification to Prototype, Seoul, Korea, 15–20 October 2017; ACM: New York, NY, USA, 2017; pp. 57–63. [Google Scholar]
- IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions; IEEE Std 1459-2010 (Revision of IEEE Std 1459-2000); IEEE: New York, NY, USA, 2010; pp. 1–50. [CrossRef]
- Czarnecki, L.S. Currents’ physical components (CPC) concept: A fundamental of power theory. In Proceedings of the IEEE International School on Nonsinusoidal Currents and Compensation ISNCC 2008, Łagów, Poland, 10–13 June 2008; pp. 1–11. [Google Scholar]
- Castro-Núñez, M.; Castro-Puche, R.; Nowicki, E. The use of geometric algebra in circuit analysis and its impact on the definition of power. In Proceedings of the 2010 International School on IEEE Nonsinusoidal Currents and Compensation (ISNCC), Lagow, Poland, 15–18 June 2010; pp. 89–95. [Google Scholar]
Nomenclature | |
---|---|
AC | Alternating Current |
ADC | Analog Digital Converter |
AFE | Analog Front End |
ARM | Advanced RISC Machine |
CBEMA | Computer & Business Equipment Manufacturer’s Association |
CRIO | Compact Reconfigurable i/o |
CS | Comprensive Sensing |
CSV | Comma-Separated Values |
DC | Direct Current |
DSP | Digital Signal Processing |
FFT | Fast Fourier Transform |
FPGA | Field Programmable Gate Array |
HHT | Hilbert-Huang Transform |
HTML | HyperText Markup Language |
IC | Integrated Circuit |
IEC | International Electrotechnical Commission |
IoT | Internet of Things |
ITIC | Information Technology Industry Council |
JSON | JavaScript Object Notation |
ML | Maximum Likelihood |
MOSFET | Metal-Oxide-Semiconductor Field-Effect Transistor |
NTP | Network Time Protocol |
oZm | openZmeter |
PCB | Printed Circuit Board |
PNN | Probabilistic Neural Network |
PQ | Power Quality |
PQD | Power Quality Disturbances |
RC | Resistor-Capacitor |
RMS | Root Mean Square |
RVC | Rapid Voltage Change |
SVM | Support Vector Machine |
THD | Total Harmonic Distortion |
oZm | MyEBOX | |
---|---|---|
Active Energy | Yes | Yes |
Reactive Energy | Yes | Yes |
Active Power | Yes | Yes |
Reactive Power | Yes | Yes |
Apparent Power | Yes | Yes |
Frequency | Yes | Yes |
RMS Voltage | Yes | Yes |
RMS Current | Yes | Yes |
Power Factor | Yes | Yes |
Phase | Yes | Yes |
4 Quadrants | Yes | Yes |
Phasor | Yes | Yes |
High Sampling Rate | Yes | Yes |
Aggregated Intervals | Yes | Yes |
Real-time alert system | Yes | No |
Realtime Pricing | Yes | No |
IEC61000/IEC61010 | Yes | Yes |
EN-50160 | Yes | Yes |
Voltage Events | Yes | Yes |
ITIC/CBEMA | Yes | Yes |
Zero Crossing | Yes | Yes |
FFT | Yes | No |
Harmonics | Yes | Yes |
THD | Yes | Yes |
Flickers | Yes | Yes |
4G | Yes | No |
Wi-Fi | Yes | Yes |
Ethernet | Yes | No |
API | Yes | No |
HTML5 Interface | Yes | No |
Telegram integration | Yes | No |
Open Source | Yes | No |
Sinusoidal Source and Resistor | Mains and Resistor | Mains and Non-Linear Load | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | StdDev | Mean | Min | Max | StdDev | Mean | Min | Max | StdDev | ||
V | oZm | 229.86 | 229.82 | 229.90 | 0.02 | 237.30 | 231.98 | 240.86 | 1.44 | 235.96 | 231.11 | 238.54 | 1.41 |
MyEbox | 229.37 | 229.33 | 229.39 | 0.01 | 237.46 | 232.07 | 241.04 | 1.45 | 236.14 | 230.24 | 238.87 | 1.49 | |
I | oZm | 2.24 | 2.23 | 2.26 | 0.01 | 2.30 | 2.25 | 2.33 | 0.01 | 3.17 | 3.12 | 3.20 | 0.02 |
MyEbox | 2.24 | 2.24 | 2.24 | 0.00 | 2.30 | 2.25 | 2.34 | 0.01 | 3.17 | 3.10 | 3.20 | 0.02 | |
P | oZm | 515.09 | 512.99 | 518.27 | 1.52 | 551.82 | 527.12 | 568.18 | 6.72 | 638.38 | 610.44 | 652.26 | 7.59 |
MyEbox | 513.08 | 513.00 | 514.00 | 0.27 | 546.78 | 522.00 | 563.00 | 6.60 | 617.81 | 586.00 | 633.00 | 7.94 | |
F | oZm | 50.00 | 50.00 | 50.00 | 0.00 | 49.99 | 49.92 | 50.04 | 0.02 | 50.00 | 49.96 | 50.04 | 0.02 |
MyEbox | 50.00 | 50.00 | 50.00 | 0.00 | 49.99 | 49.92 | 50.04 | 0.02 | 50.00 | 49.96 | 50.04 | 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viciana, E.; Alcayde, A.; Montoya, F.G.; Baños, R.; Arrabal-Campos, F.M.; Manzano-Agugliaro, F. An Open Hardware Design for Internet of Things Power Quality and Energy Saving Solutions. Sensors 2019, 19, 627. https://doi.org/10.3390/s19030627
Viciana E, Alcayde A, Montoya FG, Baños R, Arrabal-Campos FM, Manzano-Agugliaro F. An Open Hardware Design for Internet of Things Power Quality and Energy Saving Solutions. Sensors. 2019; 19(3):627. https://doi.org/10.3390/s19030627
Chicago/Turabian StyleViciana, Eduardo, Alfredo Alcayde, Francisco G. Montoya, Raul Baños, Francisco M. Arrabal-Campos, and Francisco Manzano-Agugliaro. 2019. "An Open Hardware Design for Internet of Things Power Quality and Energy Saving Solutions" Sensors 19, no. 3: 627. https://doi.org/10.3390/s19030627
APA StyleViciana, E., Alcayde, A., Montoya, F. G., Baños, R., Arrabal-Campos, F. M., & Manzano-Agugliaro, F. (2019). An Open Hardware Design for Internet of Things Power Quality and Energy Saving Solutions. Sensors, 19(3), 627. https://doi.org/10.3390/s19030627