Simple Synthesis of Cobalt Carbonate Hydroxide Hydrate and Reduced Graphene Oxide Hybrid Structure for High-Performance Room Temperature NH3 Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of CCHH with RGO
2.2. Fabrication of CCHH-RGO Gas Sensor
2.3. Material Characterization
2.4. Gas Sensing Detection
3. Results and Discussion
3.1. Characterization of Sensing Materials
3.2. Sensing Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.W.; Wang, Z.L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871. [Google Scholar] [CrossRef]
- Liu, Y.; Koep, E.; Liu, M.L. Highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition. Chem. Mater. 2005, 17, 3997–4000. [Google Scholar] [CrossRef]
- Moon, C.S.; Kim, H.R.; Auchterlonie, G.; Drennan, J.; Lee, J.H. Highly sensitive and fast responding CO sensor using SnO2 nanosheets. Sens. Actuator B Chem. 2008, 131, 556–564. [Google Scholar] [CrossRef]
- Xu, P.C.; Cheng, Z.X.; Pan, Q.Y.; Xu, J.Q.; Xiang, Q.; Yu, W.J.; Chu, Y.L. High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties. Sens. Actuator B Chem. 2008, 130, 802–808. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, L.F.; Yang, Y.H.; Xu, N.S.; Yang, G.W. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. J. Phys. Chem. C 2008, 112, 6643–6647. [Google Scholar] [CrossRef]
- Wagh, M.S.; Jain, G.H.; Patil, D.R.; Patil, S.A.; Patil, L.A. Modified zinc oxide thick film resistors as NH3 gas sensor. Sens. Actuator B Chem. 2006, 115, 128–133. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.R.; Xu, M.J.; Wang, Y.; Zhu, B.L.; Zhang, S.M.; Huang, W.P.; Wu, S.H. Hierarchically Porous ZnO Architectures for Gas Sensor Application. Cryst. Growth Des. 2009, 9, 3532–3537. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.H.; Han, D.M.; Gu, F.B.; Guo, G.S. Porous ZnO Polygonal Nanoflakes: Synthesis, Use in High-Sensitivity NO2 Gas Sensor, and Proposed Mechanism of Gas Sensing. J. Phys. Chem. C 2011, 115, 12763–12773. [Google Scholar] [CrossRef]
- Cuong, T.V.; Pham, V.H.; Chung, J.S.; Shin, E.W.; Yoo, D.H.; Hahn, S.H.; Huh, J.S.; Rue, G.H.; Kim, E.J.; Hur, S.H.; et al. Solution-processed ZnO-chemically converted graphene gas sensor. Mater. Lett. 2010, 64, 2479–2482. [Google Scholar] [CrossRef]
- Yi, J.; Lee, J.M.; Park, W., II. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sens. Actuator B Chem. 2011, 155, 264–269. [Google Scholar] [CrossRef]
- Jiang, Z.X.; Li, J.; Aslan, H.; Li, Q.; Li, Y.; Chen, M.L.; Huang, Y.D.; Froning, J.P.; Otyepka, M.; Zboril, R.; et al. A high efficiency H2S gas sensor material: Paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J. Mater. Chem. A 2014, 2, 6714–6717. [Google Scholar] [CrossRef]
- Jie, X.Q.; Zeng, D.W.; Zhang, J.; Xu, K.; Wu, J.J.; Zhu, B.K.; Xie, C.S. Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer. Sens. Actuator B Chem. 2015, 220, 201–209. [Google Scholar] [CrossRef]
- Hassan, M.; Wang, Z.H.; Huang, W.R.; Li, M.Q.; Liu, J.W.; Chen, J.F. Ultrathin Tungsten Oxide Nanowires/Reduced Graphene Oxide Composites for Toluene Sensing. Sensors 2017, 17, 2245. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.G.; Chatterjee, S.; Ray, A.K.; Chakraborty, A.K. Graphene-metal oxide nanohybrids for toxic gas sensor: A review. Sens. Actuator B Chem. 2015, 221, 1170–1181. [Google Scholar] [CrossRef]
- Xia, Y.; Li, R.; Chen, R.S.; Wang, J.; Xiang, L. 3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review. Sensors 2018, 18, 1456. [Google Scholar] [CrossRef] [PubMed]
- Li, X.G.; Zhao, Y.Y.; Wang, X.Y.; Wang, J.; Gaskov, A.M.; Akbar, S.A. Reduced graphene oxide (rGO) decorated TiO2 microspheres for selective room-temperature gas sensors. Sens. Actuator B Chem. 2016, 230, 330–336. [Google Scholar] [CrossRef]
- Feng, Q.X.; Li, X.G.; Wang, J. Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO2 composite based sensor. Sens. Actuator B Chem. 2017, 243, 1115–1126. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Yu, L.M.; Guo, F.; Liu, S.; Qi, L.J.; Shan, M.Y.; Fan, X.H. Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets. Appl. Surf. Sci. 2017, 423, 721–727. [Google Scholar] [CrossRef]
- Ha, N.H.; Thinh, D.D.; Huong, N.T.; Phuong, N.H.; Thach, P.D.; Hong, H.S. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Appl. Surf. Sci. 2018, 434, 1048–1054. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Zhang, B.; Xiao, Y.; Gao, Y.; Yang, Q.Y.; Wang, Y.L.; Lu, G.Y. Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Sens. Actuator B Chem. 2017, 249, 715–724. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Xiao, Q.Q.; Guo, X.; Zhang, X.X.; Xue, Y.F.; Jing, L.; Zhai, X.; Yan, Y.M.; Sun, K.N. A novel electrocatalyst for oxygen evolution reaction based on rational anchoring of cobalt carbonate hydroxide hydrate on multiwall carbon nanotubes. J. Power Sources 2015, 278, 464–472. [Google Scholar] [CrossRef]
- Fang, D.; Li, L.C.; Xu, W.L.; Li, G.Z.; Li, G.; Wang, N.F.; Luo, Z.P.; Xu, J.; Liu, L.; Huang, C.L.; et al. Self-assembled hairy ball-like Co3O4 nanostructures for lithium ion batteries. J. Mater. Chem. A 2013, 1, 13203–13208. [Google Scholar] [CrossRef]
- Xiao, Y.H.; Liu, S.J.; Li, F.; Zhang, A.Q.; Zhao, J.H.; Fang, S.M.; Jia, D.Z. 3D Hierarchical Co3O4 Twin-Spheres with an Urchin-Like Structure: Large-Scale Synthesis, Multistep-Splitting Growth, and Electrochemical Pseudocapacitors. Adv. Funct. Mater. 2012, 22, 4052–4059. [Google Scholar] [CrossRef]
- Needham, S.A.; Wang, G.X.; Konstantinov, K.; Tournayre, Y.; Lao, Z.; Liu, H.K. Electrochemical performance of Co3O4-C composite anode materials. Electrochem. Solid St. 2006, 9, A315–A319. [Google Scholar] [CrossRef]
- Schenck, C.V.; Dillard, J.G.; Murray, J.W. Surface-Analysis And the Adsorption Of Co(Ii) on Goethite. J. Colloid Interface Sci. 1983, 95, 398–409. [Google Scholar] [CrossRef]
- Varghese, B.; Hoong, T.C.; Yanwu, Z.; Reddy, M.V.; Chowdari, B.V.R.; Wee, A.T.S.; Vincent, T.B.C.; Lim, C.T.; Sow, C.H. Co3O4 nanostructures with different morphologies and their field-emission properties. Adv. Funct. Mater. 2007, 17, 1932–1939. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuator B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Ganesh, R.S.; Navaneethan, M.; Patil, V.L.; Ponnusamy, S.; Muthamizhchelvan, C.; Kawasaki, S.; Patil, P.S.; Hayakawa, Y. Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens. Actuator B Chem. 2018, 255, 672–683. [Google Scholar]
- Liu, X.; Chen, N.; Han, B.Q.; Xiao, X.C.; Chen, G.; Djerdj, I.; Wang, Y.D. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale 2015, 7, 14872–14880. [Google Scholar] [CrossRef]
- Wang, C.; Lei, S.C.; Li, X.; Guo, S.X.; Cui, P.; Wei, X.Q.; Liu, W.H.; Liu, H.Z. A Reduced GO-Graphene Hybrid Gas Sensor for Ultra-Low Concentration Ammonia Detection. Sensors 2018, 18, 3147. [Google Scholar] [CrossRef]
- Bai, S.L.; Tian, Y.L.; Cui, M.; Sun, J.H.; Tian, Y.; Luo, R.X.; Chen, A.F.; Li, D.Q. Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature. Sens. Actuator B Chem. 2016, 226, 540–547. [Google Scholar] [CrossRef]
- Panes-Ruiz, L.A.; Shaygan, M.; Fu, Y.X.; Liu, Y.; Khavrus, V.; Oswald, S.; Gemming, T.; Baraban, L.; Bezugly, V.; Cuniberti, G. Toward Highly Sensitive and Energy Efficient Ammonia Gas Detection with Modified Single-Walled Carbon Nanotubes at Room Temperature. ACS Sens. 2018, 3, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.B.; Tai, H.L.; Guo, R.; Yuan, Z.; Liu, C.H.; Su, Y.J.; Chen, Z.; Jiang, Y.D. Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology. Appl. Surf. Sci. 2017, 419, 84–90. [Google Scholar] [CrossRef]
Sensors | CCHH | CCHH-RGO-0.1 | CCHH-RGO-0.4 | CCHH-RGO-4 | CCHH-RGO-16 | RGO |
---|---|---|---|---|---|---|
Mass proportion of RGO/CCHH (wt %) | 0 | 0.1 | 0.4 | 4 | 16 | 100 |
Materials | Temperature (°C) | Concentration (ppm) | Response (%) | Reference |
---|---|---|---|---|
Ag/ZnO | 150 | 10 | 29.5 | [28] |
Pt/SnO2 | 115 | 50 | 25 | [29] |
RGO/Graphene | 25 | 0.5 | 2.88 | [30] |
PANI/SnO2 | 25 | 10 | 5 | [31] |
Modified-CNT | 25 | 1.5 | 0.65 | [32] |
Graphene/TiO2 | 25 | 5 | 1.25 | [33] |
CCHH/RGO | 25 | 1(10) | 9(43) | This Work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Wang, H.; Zhao, D.; Wei, X.; Li, X.; Liu, W.; Liu, H. Simple Synthesis of Cobalt Carbonate Hydroxide Hydrate and Reduced Graphene Oxide Hybrid Structure for High-Performance Room Temperature NH3 Sensor. Sensors 2019, 19, 615. https://doi.org/10.3390/s19030615
Wang C, Wang H, Zhao D, Wei X, Li X, Liu W, Liu H. Simple Synthesis of Cobalt Carbonate Hydroxide Hydrate and Reduced Graphene Oxide Hybrid Structure for High-Performance Room Temperature NH3 Sensor. Sensors. 2019; 19(3):615. https://doi.org/10.3390/s19030615
Chicago/Turabian StyleWang, Chang, Huan Wang, Dan Zhao, Xianqi Wei, Xin Li, Weihua Liu, and Hongzhong Liu. 2019. "Simple Synthesis of Cobalt Carbonate Hydroxide Hydrate and Reduced Graphene Oxide Hybrid Structure for High-Performance Room Temperature NH3 Sensor" Sensors 19, no. 3: 615. https://doi.org/10.3390/s19030615
APA StyleWang, C., Wang, H., Zhao, D., Wei, X., Li, X., Liu, W., & Liu, H. (2019). Simple Synthesis of Cobalt Carbonate Hydroxide Hydrate and Reduced Graphene Oxide Hybrid Structure for High-Performance Room Temperature NH3 Sensor. Sensors, 19(3), 615. https://doi.org/10.3390/s19030615