Low Energy Pulsed Laser Excitation in UV Enhances the Gas Sensing Capacity of Photoluminescent ZnO Nanohybrids
Abstract
1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. Ethanol Sensing
3.2. Oxygen Sensing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Arafat, M.M.; Dinan, B.; Akbar, S.A.; Haseeb, A.S.M.A. Gas sensors based on one dimensional nanostructured metal-oxides: A Review. Sensors 2012, 12, 7207–7258. [Google Scholar] [CrossRef] [PubMed]
- Chesler, P.; Hornoiu, C.; Mihaiu, S.; Vladut, C.; Maria, J.; Moreno, C.; Anastasescu, M.; Moldovan, C.; Firtat, B.; Brasoveanu, C.; et al. Nanostructured SnO2-ZnO composite gas sensors for selective detection of carbon monoxide. Beilstein J. Nanotechnol. 2016, 7, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Dhahri, R.; Hjiri, M.; El Mi, L.; Bonavita, A.; Iannazzo, D.; Latino, M.; Donato, N.; Leonardi, S.G.; Neri, G. Gas sensing properties of Al-doped ZnO for UV-activated CO detection. J. Phys. D Appl. Phys. 2016, 49, 135502. [Google Scholar] [CrossRef]
- Wang, L.; Kang, Y.; Liu, X.; Zhang, S.; Huang, W.; Wang, S. ZnO nanorod gas sensor for ethanol detection. Sens. Actuators B Chem. 2012, 162, 237–243. [Google Scholar] [CrossRef]
- Marie, M.; Mandal, S.; Manasreh, O. An electrochemical glucose sensor based on Zinc Oxide nanorods. Sensors 2015, 15, 18714–18723. [Google Scholar] [CrossRef]
- Mirabbaszadeh, K.; Mehrabian, M. Synthesis and properties of ZnO nanorods as ethanol gas sensors. Phys. Scr. 2012, 85, 35701. [Google Scholar] [CrossRef]
- Espid, E.; Taghipour, F. UV-LED Photo-activated chemical gas sensors: A review. Crit. Rev. Solid State 2017, 42, 416–432. [Google Scholar] [CrossRef]
- Alenezi, M.R.; Alshammari, A.S.; Jayawardena, K.D.G.I.; Beliatis, M.J.; Henley, S.J.; Silva, S.R.P. Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J. Phys. Chem. C 2013, 117, 17850–17858. [Google Scholar] [CrossRef]
- Prades, J.D.; Jimenez-Diaz, R.; Manzanares, M.; Hernandez-Ramirez, F.; Cirera, A.; Romano-Rodriguez, A.; Mathur, S.; Morante, J.R. A model for the response towards oxidizing gases of photoactivated sensors based on individual SnO2 nanowires. Phys. Chem. Chem. Phys. 2009, 11, 10881–10889. [Google Scholar] [CrossRef]
- de Lacy Costello, B.P.J.; Ewen, R.J.; Ratcliffe, N.M.; Richards, M. Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles. Sens. Actuators B Chem. 2008, 134, 945–952. [Google Scholar] [CrossRef]
- Madel, M.; Jakob, J.; Huber, F.; Neuschl, B.; Bauer, S.; Xie, Y.; Tische, I.; Thonke, K. Optical gas sensing by micro-photoluminescene on multiple and single ZnO nanowires. Phys. Status Solidi A 2015, 212, 1810–1816. [Google Scholar] [CrossRef]
- Pallotti, D.K.; Amoruso, S.; Orabona, E.; Maddalena, P.; Lettieri, S. Biparametric optical sensing of oxygen by titanium dioxide. Sens. Actuators B Chem. 2015, 221, 515–520. [Google Scholar] [CrossRef]
- Grigorjeva, L.; Millers, D.; Smits, K.; Zolotarjovs, A. Gas sensitive luminescence of ZnO coatings obtained by plazma electrolytic oxidation. Sens. Actuators A Phys. 2015, 234, 290–293. [Google Scholar] [CrossRef]
- Cretì, A.; Valerini, D.; Taurino, A.; Quaranta, F.; Lomascolo, M.; Rella, R. Photoluminescence quenching processes by NO2 adsorption in ZnO nanostructured films. J. Appl. Phys. 2012, 111, 73520. [Google Scholar] [CrossRef]
- Orabona, E.; Pallotti, D.; Fioravanti, A.; Gherardi, S.; Sacerdoti, M.; Carotta, M.C.; Maddalena, P.; Lettieri, S. On mechanism of NO2 detection by ZnO excitonic luminescence. Sens. Actuators B Chem. 2015, 210, 706–711. [Google Scholar] [CrossRef]
- Sin, T.T.; Hui, T.C.; Yi, C.W.; Chin, Y.C.; Umar, A.A.; Titian, G.R.; Beng, L.H.; Sing, L.K.; Yahaya, M.; Salleh, M.M. Microwave-assisted hydrolysis preparation of highly crystalline ZnO nanorod array for room temperature photoluminescence-based CO gas sensor. Sens. Actuators B Chem. 2016, 227, 304–312. [Google Scholar] [CrossRef]
- Zhyrovetsky, V.M.; Popovych, D.I.; Savk, S.S.; Serednytski, A.S. Nanopowder metal oxide for photoluminescent gas sensing. Nanoscale Res. Lett. 2017, 12, 132. [Google Scholar] [CrossRef]
- Klini, A.; Pissadakis, S.; Das, R.N.; Giannelis, E.P.; Anastasiadis, S.H.; Anglos, D. ZnO-PDMS nanohybrids: A novel optical sensing platform for ethanol vapor detection at room temperature. J. Phys. Chem. C 2015, 119, 623–631. [Google Scholar] [CrossRef]
- Jiang, T.; Du, B.; Zhang, H.; Yu, D.; Sun, L.; Zhao, G.; Yang, C.; Sun, Y.; Yu, M.; Ashfold, M.N.R. High-performance photoluminescence-based oxygen sensing with Pr-modified ZnO nanofibers. Appl. Surf. Sci. 2019, 483, 922–928. [Google Scholar] [CrossRef]
- Liu, X.; Du, B.; Sun, Y.; Yu, M.; Yin, Y.; Tang, W.; Chen, C.; Sun, L.; Yang, B.; Cao, W.; et al. Sensitive room temperature photoluminescence-based sensing of H2S with novel CuO-ZnO nanorods. ACS Appl. Mater. Interfaces 2016, 8, 16379–16385. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, S.N.; Nozaki, S.; Sahu, S.N. ZnO nanorod-based non-enzymatic optical glucose biosensor. J. Biomed. Nanotechnol. 2015, 11, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Valencia, J.R.; Alcaire, M.; Romero-Gómez, P.; Macias-Montero, M.; Aparicio, F.J.; Borras, A.; Gonzalez-Elipe, A.R.; Barranco, A. Oxygen optical sensing in gas and liquids with nanostructured ZnO thin films based on exciton emission detection. J. Phys. Chem. C 2014, 118, 9852–9859. [Google Scholar] [CrossRef]
- Baratto, C.; Todros, S.; Faglia, G.; Comini, E.; Sberveglieri, G.; Lettieri, S.; Santamariac, L.; Maddalena, P. Luminescence response of ZnO nanowires to gas adsorption. Sens. Actuators B Chem. 2009, 140, 461–466. [Google Scholar] [CrossRef]
- Yadav, K.; Gahlaut, S.K.; Mehta, B.R.; Singh, J.P. Photoluminescence based H2 and O2 gas sensing by ZnO nanowires. Appl. Phys. Lett. 2016, 108, 071602. [Google Scholar]
- Anglos, D.; Stassinopoulos, A.; Das, R.N.; Zacharakis, G.; Psyllaki, M.; Jakubiak, R.; Vaia, R.A.; Giannelis, E.P.; Anastasiadis, S.H. Random laser action in organic-inorganic nanocomposites. J. Opt. Soc. Am. B 2004, 21, 208–213. [Google Scholar] [CrossRef]
- Yamamoto, A.; Kido, T.; Goto, T.; Chen, Y.; Yao, T. Bandgap renormalization of ZnO epitaxial thin films. Solid State Commun. 2002, 122, 29–32. [Google Scholar] [CrossRef]
- Calvert, J.G. Glossary of Atmospheric Chemistry Terms. Pure App. Chem. 1990, 62, 2167–2219. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; He, G.; Deng, Y. Enhancement of photoresponse and UV-assisted gas sensing with Au decorated ZnO nanofibers. Mater. Chem. Phys. 2012, 134, 1172–1178. [Google Scholar] [CrossRef]
- Korir, K.K.; Catellani, A.; Cicero, G. Ethanol gas gensing mechanism in ZnO nanowires: An ab Initio Study. J. Phys. Chem. C 2014, 118, 24533–24537. [Google Scholar] [CrossRef]
- Comini, E.; Faglia, G.; Sberveglieri, G. UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sens. Actuators B Chem. 2001, 78, 73–77. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Adachi, S. Optical constants of ZnO. Jpn. J. Appl. Phys. 1997, 36, 6237–6243. [Google Scholar] [CrossRef]
- Versteegh, M.A.M.; Kuis, T.; Stoof, H.T.C.; Dijkhuis, J.I. Ultrafast screening and carrier dynamics in ZnO: Theory and experiment. Phys. Rev. B 2011, 84, 35207. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Y.; Yu, M.; Yin, Y.; Yang, B.; Cao, W.; Ashfold, M.N.R. Incident fluence dependent morphologies, photoluminescence and optical oxygen sensing properties of ZnO nanorods grown by pulsed laser deposition. J. Mater. Chem. C 2015, 3, 2557–2562. [Google Scholar] [CrossRef]
- Szatmari, S.; Schafer, F.P. Simplified laser system for the generation of 60 fs pulses at 248 nm. Opt. Commun. 1988, 68, 196–202. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klini, A.; Androulidaki, M.; Anglos, D. Low Energy Pulsed Laser Excitation in UV Enhances the Gas Sensing Capacity of Photoluminescent ZnO Nanohybrids. Sensors 2019, 19, 5490. https://doi.org/10.3390/s19245490
Klini A, Androulidaki M, Anglos D. Low Energy Pulsed Laser Excitation in UV Enhances the Gas Sensing Capacity of Photoluminescent ZnO Nanohybrids. Sensors. 2019; 19(24):5490. https://doi.org/10.3390/s19245490
Chicago/Turabian StyleKlini, Argyro, Maria Androulidaki, and Demetrios Anglos. 2019. "Low Energy Pulsed Laser Excitation in UV Enhances the Gas Sensing Capacity of Photoluminescent ZnO Nanohybrids" Sensors 19, no. 24: 5490. https://doi.org/10.3390/s19245490
APA StyleKlini, A., Androulidaki, M., & Anglos, D. (2019). Low Energy Pulsed Laser Excitation in UV Enhances the Gas Sensing Capacity of Photoluminescent ZnO Nanohybrids. Sensors, 19(24), 5490. https://doi.org/10.3390/s19245490