Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations
Abstract
:1. Introduction
2. Principles of Ground Based GNSS TEC Retrieval
3. Space-Based Ionospheric TEC Retrieval and Datasets
3.1. Satellite Altimetry TEC Retrieval
3.2. Jason-2 Satellite Altimetry Data
3.3. Ionospheric Radio Occultation TEC Retrieval
3.4. COSMIC Ionospheric Radio Occultation Data
4. Result Analysis
4.1. Evaluation of IGS GIM TEC with Jason-2 SA TEC
4.2. Evaluation of IGS GIM TEC with COSMIC IRO TEC
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krankowski, A.; Hernandez-Pajares, M.; Feltens, J.; Komjathy, A.; Schaer, S.; Garcia-Rigo, A. Present and future IGS ionospheric products. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 2–7 May 2010. [Google Scholar]
- Zhang, H.; Xu, P.; Han, W.; Ge, M.; Shi, C. Eliminating negative VTEC in global ionosphere maps using inequality-constrained least squares. Adv. Space Res. 2013, 51, 988–1000. [Google Scholar] [CrossRef]
- Mannucci, A.; Wilson, B.; Yuan, D.; Ho, C.; Lindqwister, U.; Runge, T. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Orús, R.; Hernández-Pajares, M.; Juan, J.M.; Sanz, J. Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J. Atmos. Sol. Terr. Phys. 2005, 67, 1598–1609. [Google Scholar] [CrossRef]
- Mautz, R.; Ping, J.; Heki, K.; Schaffrin, B.; Shum, C.; Potts, L. Eliminating negative VTEC in global ionosphere maps using inequality-constrained least squares. J. Geod. 2005, 78, 662–667. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Wang, N.; Hernández-Pajares, M. SHPTS: Towards a new method for generating precise global ionospheric TEC map based on spherical and generalized triganometric series functions. J. Geod. 2015, 89, 331–345. [Google Scholar] [CrossRef]
- Wang, C.; Shi, C.; Zhang, H.; Fan, L. Improvement of global ionospheric VTEC maps using the IRI 2012 ionospheric empirical model. J. Atmos. Sol. Terr. Phys. 2016, 146, 186–193. [Google Scholar] [CrossRef]
- Todorova, S.; Hobiger, T.; Schuh, H. Using the global navigation satellite system and satellite altimetry for combined global ionosphere maps. Adv. Space Res. 2008, 42, 727–736. [Google Scholar] [CrossRef]
- Schmidt, M.; Karslioglu, M.O.; Zeilhofer, C. Regional multi-dimensional modeling of the ionosphere from satellite data. In Proceedings of the TUJK Annual Scientific Meeting, Ankara, Turkey, 15 November 2007. [Google Scholar]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
- Alizadeh, M.; Schuh, H.; Todorova, S.; Schmidt, M. Global ionosphere maps of VTEC from GNSS, satellite altimetry, and Formosat-3/COSMIC data. J. Geod. 2011, 85, 975–987. [Google Scholar] [CrossRef]
- Dettmering, D.; Schmidt, M.; Heinkelmann, R.; Seitz, M. Combination of different space-geodetic observations for regional ionosphere modeling. J. Geod. 2011, 85, 989–998. [Google Scholar] [CrossRef]
- Chen, P.; Yao, Y.; Yao, W. Global ionosphere maps based on GNSS, satellite altimetry, radio occultation and DORIS. GPS Solut. 2017, 21, 639–650. [Google Scholar] [CrossRef]
- Hu, A.; Li, Z.; Carter, B.; Wu, S.; Wang, X.; Norman, R.; Zhang, K. Helmert-vce-aided fast-wtls approach for global ionospheric vtec modelling using data from gnss, satellite altimetry and radio occultation. J. Geod. 2019, 93, 877–888. [Google Scholar] [CrossRef]
- Scharroo, R.; Smith, W.H.F. A global positioning system–based climatology for the total electron content in the ionosphere. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Yizengaw, E.; Moldwin, M.B.; Galvan, D.; Iijima, B.A.; Komjathy, A.; Mannucci, A.J. Global plasmaspheric TEC and its relative contribution to GPS TEC. J. Atmos. Sol. Terr. Phys. 2008, 70, 1541–1548. [Google Scholar] [CrossRef]
- Chen, P.; Yao, Y. Research on global plasmaspheric electron content by using LEO occultation and GPS data. Adv. Space Res. 2015, 55, 2248–2255. [Google Scholar] [CrossRef]
- Liu, L.; Yao, Y.; Kong, J.; Shan, L. Plasmaspheric Electron Content Inferred from Residuals between GNSS-Derived and TOPEX/JASON Vertical TEC Data. Remote Sens. 2018, 10, 621. [Google Scholar] [CrossRef] [Green Version]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2. November 2015, Astronomical Institute, University of Bern, Bern Open Publishing. Available online: http://www.bernese.unibe.ch/docs/DOCU52.pdf (accessed on 30 November 2019).
- Kloubuchar, J.A. Ionospheric corrections for the single frequency user of the global positioning system. In Proceedings of the National Telecommunication Symposium, Galveston, TX, USA, 7–10 November 1982. [Google Scholar]
- Wild, U. Ionosphere and geodetic satellite systems: Permanent GPS tracking data for modeling and monitoring. Geod. Geophys. Arb. Schweiz 1994, 48, 155. [Google Scholar]
- Georgiadiou, Y. Modelling the Ionosphere for an Active Control Network of GPS Station. In The Delft Geodetic Computing Centre; Delft University of Technology: Delft, The Netherlands, 1994. [Google Scholar]
- Camargo, P.; Monico, J.; Ferreira, L. Application of ionospheric corrections in the equatorial region for L1 GPS users. Earth Planets Space 2000, 52, 1083–1089. [Google Scholar] [CrossRef] [Green Version]
- Schaer, S.; Beutler, G.; Mervart, L.; Rothacher, M.; Wild, U. Global and regional ionosphere models using the GPS double difference phase observable. In Proceedings of the IGS Workshop, Potsdam, Germany, 15–17 May 1995. [Google Scholar]
- Dettmering, D.; Heinkelmann, R.; Schmidt, M. Systematic differences between VTEC obtained by different space-geodetic techniques during cont08. J. Geod. 2011, 85, 443–451. [Google Scholar] [CrossRef]
- Fong, C.J.; Yen, N.L.; Chu, C.H.; Yang, S.K.; Shiau, W.T.; Huang, C.Y.; Chi, S.; Chen, S.S.; Liou, Y.A.; Kuo, Y.H. FORMOSAT-3/COSMIC Spacecraft Constellation System, Mission Results, and Prospect for Follow-On Mission. Terr. Atmos. Ocean Sci. 2009, 20, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, L.; Wan, W.; Ning, B. Comparison of the observed topside ionospheric and plasmaspheric electron content derived from the cosmic podtec measurements with the iri_plas model results. Adv. Space Res. 2017, 60, 222–227. [Google Scholar] [CrossRef]
- Dumont, J.; Rosmorduc, V.; Picot, N.; Desai, S.; Bonekamp, H.; Figa, J.; Scharroo, R. OSTM/Jason-2 Products Handbook; CNES, EUMETSAT, JPL, NOAA/NESDIS, 400(1). Open Publishing. Available online: https://www.ospo.noaa.gov/Products/documents/hdbk_j2.pdf (accessed on 30 November 2019).
- Jakowski, N.; Tsybulyal, K.; Stankov, S.M.; Wehrenpfennig, A. About the potential of GPS radio occultation measurements for exploring the ionosphere. In Earth Observation with CHAMP: Results from Three Years in Orbit; Reigber, C., Lühr, H., Schwintzer, P., Wickert, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 441–446. [Google Scholar]
- Sun, Y.; Liu, J.; Tsai, H.; Krankowski, A. Global ionosphere map constructed by using total electron content from ground-based GPS receiver and FORMOSAT-3/COSMIC GPS occultation experiment. GPS Solut. 2017, 21, 1583–1591. [Google Scholar] [CrossRef]
- Krankowski, A.; Zakharenkova, I.; Krypiak-Gregorczyk, A.; Shagimuratov, I.I.; Wielgosz, P. Ionospheric electron density observed by FORMOSAT-3/COSMIC over the European region and validated by ionosonde data. J. Geod. 2011, 85, 949–964. [Google Scholar] [CrossRef] [Green Version]
- Uma, G.; Brahmanandam, P.S.; Chu, Y.H. A long-term study on the deletion criterion of questionable electron density profiles caused by ionospheric irregularities—COSMIC radio occultation technique. Adv. Space Res. 2016, 57, 2452–2463. [Google Scholar] [CrossRef]
- Lei, J.H.; Syndergaard, S.; Burns, A.G.; Solomon, S.C.; Wang, W.; Zeng, Z.; Roble, R.G.; Wu, Q.; Kuo, Y.H.; Holt, J.M.; et al. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results. J. Geophys. Res. Space 2007, 112. [Google Scholar] [CrossRef]
- Schaer, S.; Gurtner, W.; Feltens, J. IONEX: The ionosphere map exchange format version 1. In Proceedings of the IGS AC Workshop, Darmstadt, Germany, 9–11 February 1998; Available online: ftp://igs.org/pub/data/format/ionex1.pdf (accessed on 30 November 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Huang, L.; Zhang, S.; Chai, Y. Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations. Sensors 2019, 19, 5489. https://doi.org/10.3390/s19245489
Li W, Huang L, Zhang S, Chai Y. Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations. Sensors. 2019; 19(24):5489. https://doi.org/10.3390/s19245489
Chicago/Turabian StyleLi, Wei, Longqiang Huang, Shaocheng Zhang, and Yanju Chai. 2019. "Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations" Sensors 19, no. 24: 5489. https://doi.org/10.3390/s19245489
APA StyleLi, W., Huang, L., Zhang, S., & Chai, Y. (2019). Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations. Sensors, 19(24), 5489. https://doi.org/10.3390/s19245489