# Absolute Distance Measurement Using Frequency-Scanning Interferometry Based on Hilbert Phase Subdivision

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. The Basic Principle of FSI

#### 2.2. System Description

#### 2.3. The Principle of the Frequency-Sampling Method

#### 2.4. The Principle of Hilbert Phase Subdivision Resampling

## 3. Experiments and Results

#### 3.1. Experiment

#### 3.2. Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Zheng, J. Analysis of optical frequency-modulated continuous-waveinterference. Appl. Opt.
**2004**, 43, 4189–4197. [Google Scholar] [CrossRef] [PubMed] - Headrick, J.M.; Thomason, J.F. Applications of high-frequency radar. Radio Sci.
**1998**, 33, 1045–1054. [Google Scholar] [CrossRef] - Yang, H.-J.; Deibel, J.; Nyberg, S.; Riles, K. High-precision absolute distance and vibration measurement with frequency scannedinterferometry. Appl. Opt.
**2005**, 44, 3937–3944. [Google Scholar] [CrossRef] [PubMed] - Cabral, A.; Rebordão, J. Accuracy of frequency-sweeping interferometry for absolute distance metrology. Opt. Eng.
**2007**, 46, 073602. [Google Scholar] [CrossRef] - Shi, G.; Zhang, F.; Qu, X.; Meng, X. High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications. Opt. Eng.
**2014**, 53, 122402. [Google Scholar] [CrossRef] - Wu, X.; Wei, H.; Zhang, H.; Ren, L.; Li, Y.; Zhang, J. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb. Appl. Opt.
**2013**, 10, 2042–2048. [Google Scholar] [CrossRef] [PubMed] - Satyan, N.; Vasilyev, A.; Rakuljic, G.; Leyva, V.; Yariv, A. Precise control of broadband frequency chirps using optoelectronic feedback. Opt. Express
**2009**, 17, 15991–15999. [Google Scholar] [CrossRef] [PubMed] - Roos, P.A.; Reibel, R.R.; Berg, T.; Kaylor, B.; Barber, Z.W.; Babbitt, W.R. Ultrabroadband optical chirp linearization for precision metrology applications. Opt. Lett.
**2009**, 34, 3692–3694. [Google Scholar] [CrossRef] [PubMed] - Iiyama, K.; Matsui, S.; Kobayashi, T.; Maruyama, T. High-Resolution FMCW Reflectometry Using a Single-Mode Vertical-Cavity Surface-Emitting Laser. IEEE Photonics Technol. Lett.
**2011**, 23, 703–705. [Google Scholar] [CrossRef] - Shi, G.; Wang, W.; Zhang, F. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers. Opt. Commun.
**2018**, 411, 152–157. [Google Scholar] [CrossRef] - Deng, W.; Liu, Z.; Deng, Z.; Jia, X.; Wang, Z. Extraction of interference phase in frequency-scanning interferometry based on empirical mode decomposition and Hilbert transform. Appl. Opt.
**2018**, 57, 2299–2305. [Google Scholar] [CrossRef] [PubMed] - Lu, C.; Xiang, Y.; Gan, Y.; Liu, B.; Chen, F.; Liu, X.; Liu, G. FSI-based non-cooperative target absolute distance measurement method using PLL correction for the influence of a nonlinear clock. Opt. Lett.
**2018**, 43, 2098. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**The waveform of the FSI (frequency-scanning interferometry) ranging system: (

**a**) The beat signal for laser linear scanning; (

**b**) The beat signal for laser nonlinear scanning.

**Figure 6.**The results of the distance measurements: (

**a**) The distance spectrum without the Hilbert phase subdivision resampling; (

**b**) The distance spectrum with the Hilbert phase subdivision resampling.

**Figure 7.**The distance measurement results: (

**a**) Distance spectra for multiple measurements; (

**b**) Result of the resolution experiment.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jiang, S.; Liu, B.; Wang, H.; Zhao, B.
Absolute Distance Measurement Using Frequency-Scanning Interferometry Based on Hilbert Phase Subdivision. *Sensors* **2019**, *19*, 5132.
https://doi.org/10.3390/s19235132

**AMA Style**

Jiang S, Liu B, Wang H, Zhao B.
Absolute Distance Measurement Using Frequency-Scanning Interferometry Based on Hilbert Phase Subdivision. *Sensors*. 2019; 19(23):5132.
https://doi.org/10.3390/s19235132

**Chicago/Turabian Style**

Jiang, Shuo, Bo Liu, Huachuang Wang, and Bin Zhao.
2019. "Absolute Distance Measurement Using Frequency-Scanning Interferometry Based on Hilbert Phase Subdivision" *Sensors* 19, no. 23: 5132.
https://doi.org/10.3390/s19235132