# Indoor Mapping Guidance Algorithm of Rotary-Wing UAV Including Dead-End Situations

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Unmanned Aerial Vehicle System and Its Object Data Acquisition

#### 2.1. Dynamics

#### 2.2. Control Structure

#### 2.3. Object Data Acquisition

## 3. Indoor Mapping Guidance Algorithm

#### 3.1. Velocity Vector and Yaw Commands

#### 3.2. Velocity Magnitude Command

#### 3.3. Exploration Completion Logic

#### 3.4. Dead-End Situation Logic

Algorithm 1: Overall strategy including dead-end situation. |

## 4. Numerical Simulation

#### 4.1. Simulation I: Single Room

#### 4.2. Simulation II: L-Shaped Aisle

#### 4.3. Simulation III: Complicated Indoor Environment

#### 4.4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Jin, R.; Jiang, J.; Qi, Y.; Lin, D.; Song, T. Drone Detection and Pose Estimation Using Relational Graph Networks. Sensors
**2019**, 19, 1479. [Google Scholar] [CrossRef] [PubMed] - Koksal, N.; Jalalmaab, M.; Fidan, B. Adaptive Linear Quadratic Attitude Tracking Control of a Quadrotor UAV Based on IMU Sensor Data Fusion. Sensors
**2019**, 19, 46. [Google Scholar] [CrossRef] [PubMed] - Dong, J.; He, B. Novel Fuzzy PID-Type Iterative Learning Control for Quadrotor UAV. Sensors
**2019**, 19, 24. [Google Scholar] [CrossRef] [PubMed] - Wang, J.Y.; Luo, B.; Zeng, M.; Meng, Q.H. A Wind Estimation Method with an Unmanned Rotorcraft for Environmental Monitoring Tasks. Sensors
**2018**, 18, 4504. [Google Scholar] [CrossRef] - Li, B.; Zhou, W.; Sun, J.; Wen, C.Y.; Chen, C.K. Development of Model Predictive Controller for a Tail-Sitter VTOL UAV in Hover Flight. Sensors
**2018**, 18, 2859. [Google Scholar] [CrossRef] - Stevens, B.L.; Lewis, F.L. Aircraft Control and Simulation; Wiley: Hoboken, NJ, USA, 2003; pp. 1–481. [Google Scholar]
- Sanca, A.S.; Alsina, P.J.; Cerqueira, J.F. Dynamic Modelling of a Quadrotor Aerial Vehicle with Nonlinear Inputs. In Proceedings of the IEEE Latin American Robotic Symposium, Natal, Brazil, 29–30 October 2008. [Google Scholar]
- Bangura, M.; Mahony, R. Nonlinear Dynamic Modeling for High Performance Control of a Quadrotor. In Proceedings of the Australasian Conference on Robotics and Automation, Wellington, New Zealand, 3–5 December 2012. [Google Scholar]
- Garcia Carrillo, L.R.; Fantoni, I.; Rondon, E.; Dzul, A. Three-Dimensional Position and Velocity Regulation of a Quad-Rotorcraft Using Optical Flow. IEEE Trans. Aerosp. Electron. Syst.
**2015**, 51, 358–371. [Google Scholar] [CrossRef] - Bristeau, P.J.; Martin, P.; Salaün, E.; Petit, N. The Role of Propeller Aerodynamics in the Model of a Quadrotor UAV. In Proceedings of the European Control Conference, Budapest, Hungary, 23–26 August 2009. [Google Scholar]
- Bramwell, A.R.S.; Done, G.; Balmford, D. Bramwell’s Helicopter Dynamics; Butterworth: Oxford, UK, 2001; pp. 1–114. [Google Scholar]
- Arleo, A.; Millán, J.D.R.; Floreano, D. Efficient learning of variable-resolution cognitive maps for autonomous indoor navigation. IEEE Trans. Robot. Autom.
**1999**, 15, 990–1000. [Google Scholar] [CrossRef] [Green Version] - Luo, R.C.; Lai, C.C. Enriched Indoor Map Construction Based on Multisensor Fusion Approach for Intelligent Service Robot. IEEE Trans. Ind. Electron.
**2012**, 59, 3135–3145. [Google Scholar] [CrossRef] - Khoshelham, K.; Elberink, S.O. Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications. Sensors
**2012**, 12, 1437–1454. [Google Scholar] [CrossRef] [Green Version] - Wen, C.; Qin, L.; Zhu, Q.; Wang, C.; Li, J. Three-Dimensional Indoor Mobile Mapping With Fusion of Two-Dimensional Laser Scanner and RGB-D Camera Data. IEEE Geosci. Remote. Sens. Lett.
**2014**, 11, 843–847. [Google Scholar] - Jung, J.; Lee, S.; Myung, H. Indoor Mobile Robot Localization and Mapping Based on Ambient Magnetic Fields and Aiding Radio Sources. IEEE Trans. Instrum. Meas.
**2015**, 64, 1922–1934. [Google Scholar] [CrossRef] - Jung, J.; Yoon, S.; Ju, S.; Heo, J. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM. Sensors
**2015**, 15, 26430–26456. [Google Scholar] [CrossRef] [PubMed] - dos Santos, D.R.; Basso, M.A.; Khoshelham, K.; de Oliveira, E.; Pavan, N.L.; Vosselman, G. Mapping Indoor Spaces by Adaptive Coarse-to-Fine Registration of RGB-D Data. IEEE Geosci. Remote. Sens. Lett.
**2016**, 13, 262–266. [Google Scholar] [CrossRef] - Lee, K.; Ryu, S.; Yeon, S.; Cho, H.; Jun, C.; Kang, J.; Choi, H.; Hyeon, J.; Baek, I.; Jung, W.; et al. Accurate Continuous Sweeping Framework in Indoor Spaces With Backpack Sensor System for Applications to 3D Mapping. IEEE Robot. Autom. Lett.
**2016**, 1, 316–323. [Google Scholar] [CrossRef] - Guerra, E.; Munguia, R.; Bolea, Y.; Grau, A. Human Collaborative Localization and Mapping in Indoor Environments with Non-Continuous Stereo. Sensors
**2016**, 16, 275. [Google Scholar] [CrossRef] - Li, J.; Zhong, R.; Hu, Q.; Ai, M. Feature-Based Laser Scan Matching and Its Application for Indoor Mapping. Sensors
**2016**, 16, 1265. [Google Scholar] [CrossRef] - Zhou, M.; Zhang, Q.; Wang, Y.; Tian, Z. Hotspot Ranking Based Indoor Mapping and Mobility Analysis Using Crowdsourced Wi-Fi Signal. IEEE Access
**2017**, 5, 3594–3602. [Google Scholar] [CrossRef] - Jiang, L.; Zhao, P.; Dong, W.; Li, J.; Ai, M.; Wu, X.; Hu, Q. An Eight-Direction Scanning Detection Algorithm for the Mapping Robot Pathfinding in Unknown Indoor Environment. Sensors
**2018**, 18, 4254. [Google Scholar] [CrossRef] - Zhou, B.; Li, Q.; Zhai, G.; Mao, Q.; Yang, J.; Tu, W.; Xue, W.; Chen, L. A Graph Optimization-Based Indoor Map Construction Method via Crowdsourcing. IEEE Access
**2018**, 6, 33692–33701. [Google Scholar] [CrossRef] - Tang, S.; Li, Y.; Yuan, Z.; Li, X.; Guo, R.; Zhang, Y.; Wang, W. A Vertex-to-Edge Weighted Closed-Form Method for Dense RGB-D Indoor SLAM. IEEE Access
**2019**, 7, 32019–32029. [Google Scholar] [CrossRef] - Qian, C.; Zhang, H.; Tang, J.; Li, B.; Liu, H. An Orthogonal Weighted Occupancy Likelihood Map with IMU-Aided Laser Scan Matching for 2D Indoor Mapping. Sensors
**2019**, 19, 1742. [Google Scholar] [CrossRef] [PubMed] - Park, J.; Kim, Y. Horizontal-vertical guidance of Quadrotor for obstacle shape mapping. IEEE Trans. Aerosp. Electron. Syst.
**2016**, 52, 3024–3035. [Google Scholar] [CrossRef] - Khalil, H.K. Nonlinear Systems; Prentice Hall: Upper Saddle River, NJ, USA, 2002; pp. 505–544. [Google Scholar]
- Breu, H.; Gil, J.; Kirkpatrick, D.; Werman, M. Linear Time Euclidean Distance Transform Algorithms. IEEE Trans. Pattern Anal. Mach. Intell.
**1995**, 17, 529–533. [Google Scholar] [CrossRef]

**Figure 4.**Image processing for exploration completion logic: (

**a**) obtained object data points (top view, tangent–plane coordinate system); (

**b**) binary image; (

**c**) distance transform; and (

**d**) two different UAV locations.

**Figure 6.**Simulation I result: (

**a**) trajectory of the quadrotor and mapping at $t=16.0$ s (azimuth: −62${}^{\circ}$ and elevation: 50${}^{\circ}$, tangent–plane coordinate system); (

**b**) exploration completion check at $t=16.0$ s; (

**c**) trajectory of the quadrotor and mapping at $t=32.0$ s (azimuth: −62${}^{\circ}$ and elevation: 50${}^{\circ}$, tangent–plane coordinate system); and (

**d**) exploration completion check at $t=32.0$ s.

**Figure 7.**Time histories of UAV-related parameters (Simulation I): (

**a**) attitude; (

**b**) velocity (tangent–plane coordinate system); and (

**c**) minimum distance between UAV and object.

**Figure 8.**Simulation II result: (

**a**) trajectory of the quadrotor and mapping at $t=12.0$ s (top view, tangent–plane coordinate system); (

**b**) trajectory of the quadrotor and mapping at $t=19.8$ s (top view, tangent–plane coordinate system); (

**c**) exploration completion check at $t=19.8$ s; and (

**d**) trajectory of the quadrotor and mapping at $t=47.0$ s (top view, tangent–plane coordinate system).

**Figure 9.**Time histories of UAV-related parameters (Simulation II): (

**a**) attitude; (

**b**) velocity (tangent–plane coordinate system); and (

**c**) minimum distance between UAV and object.

**Figure 10.**Simulation III result: (

**a**) trajectory of the quadrotor and mapping at $t=98.0$ s (top view, tangent–plane coordinate system); (

**b**) discovered area at $t=98.0$ s; (

**c**) trajectory of the quadrotor and mapping at $t=318.4$ s (top view, tangent–plane coordinate system); (

**b**) discovered area at $t=318.4$ s.

**Figure 11.**Time histories of UAV-related parameters (Simulation III): (

**a**) attitude; (

**b**) velocity (tangent–plane coordinate system); and (

**c**) minimum distance between UAV and object.

m | 6.2 kg | d | 2.5 m | ${\ell}_{{y}_{max}}$ | 2.5 m |

${J}_{x}$ | 2.85 × 10${}^{-1}$ kgm${}^{2}$ | ${\ell}_{id}$ | 1.5 m | ${\ell}_{{y}_{min}}$ | 2.2 m |

${J}_{y}$ | 2.85 × 10${}^{-1}$ kgm${}^{2}$ | ${c}_{bf}$ | $0.35$ | ${v}_{0}$ | 0.8 m/s |

${J}_{z}$ | 4.94 × 10${}^{-1}$ kgm${}^{2}$ | ${c}_{z}$ | $0.02$ | ${v}_{min}$ | 0.3 m/s |

g | 9.807 m/s${}^{2}$ | ${t}_{m3}$ | 11.0 s | ${\ell}_{yd}$ | 0.15 m |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Park, J.; Yoo, J.
Indoor Mapping Guidance Algorithm of Rotary-Wing UAV Including Dead-End Situations. *Sensors* **2019**, *19*, 4854.
https://doi.org/10.3390/s19224854

**AMA Style**

Park J, Yoo J.
Indoor Mapping Guidance Algorithm of Rotary-Wing UAV Including Dead-End Situations. *Sensors*. 2019; 19(22):4854.
https://doi.org/10.3390/s19224854

**Chicago/Turabian Style**

Park, Jongho, and Jaehyun Yoo.
2019. "Indoor Mapping Guidance Algorithm of Rotary-Wing UAV Including Dead-End Situations" *Sensors* 19, no. 22: 4854.
https://doi.org/10.3390/s19224854