A High-Sensitivity Methane Sensor with Localized Surface Plasmon Resonance Behavior in an Improved Hexagonal Gold Nanoring Array
Abstract
1. Introduction
2. Sensing Principles and Model Optimization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, C.; Wang, F. A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance. Opt. Commun. 2016, 359, 378–382. [Google Scholar] [CrossRef]
- Seifouri, M.; Rouini, M.A.; Olyaee, S. Design of a surface plasmon resonance biosensor based on photonic crystal fiber with elliptical holes. Opt. Rev. 2018, 25, 555–562. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L. Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Opt. Commun. 2017, 382, 162–166. [Google Scholar] [CrossRef]
- An, G.; Li, S.; Qin, W.; Zhang, W.; Fan, Z.; Bao, Y. High-Sensitivity Refractive Index Sensor Based on D-Shaped Photonic Crystal Fiber with Rectangular Lattice and Nanoscale Gold Film. Plasmonics 2014, 9, 1355–1360. [Google Scholar] [CrossRef]
- Mahani, F.F.; Mokhtari, A.; Mehran, M. Dual mode operation, highly selective nanohole array-based plasmonic colour filters. Nanotechnology 2017, 28, 385203. [Google Scholar] [CrossRef]
- Paul, D.; Biswas, R. [INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain. Opt. Laser Technol. 2018, 101, 379–387. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Peng, C.; Tang, C.; Shen, X.; Deng, L.; Park, G. Optical Cavity-Enhanced Localized Surface Plasmon Resonance for High-Quality Sensing. IEEE Photonics Technol. Lett. 2018, 30, 728–731. [Google Scholar] [CrossRef]
- Jiao, S.; Gu, S. Research on dual-core photonic crystal fiber based on local surface plasmon resonance sensor with silver nanowires. J. Nanophotonics 2018, 12, 1. [Google Scholar] [CrossRef]
- Chamanzar, M.; Xia, Z.; Yegnanarayanan, S.; Adibi, A. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy. Opt. Express 2013, 21, 32086. [Google Scholar] [CrossRef]
- Xu, X.; Hu, X.; Chen, X.; Kang, Y.; Zhang, Z.B.; Parizi, K.; Wong, H.S.P. Engineering a Large Scale Indium Nanodot Array for Refractive Index Sensing. ACS Appl. Mater. Interfaces 2016, 8, 31871–31877. [Google Scholar] [CrossRef]
- Lu, X.R.; Liu, F.T. High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures. J. Mod. Opt. 2016, 63, 177–183. [Google Scholar] [CrossRef]
- Tsai, C.; Lu, S.; Lin, J.; Lee, P. High sensitivity plasmonic index sensor using slablike gold nanoring arrays. Appl. Phys. Lett. 2011, 98, 153108. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.D.; Cheng, S.F.; Chau, L.K.; Wang, C.R.C. Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens. Bioelectron. 2007, 22, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Cha, S.H.; Kang, B.H.; Lee, S.W.; Kang, S.W. Optical gas sensor based on LSPR using ZnO nanoparticles and AAO nanostructure. In Proceedings of the 2015 IEEE SENSORS, Busan, Korea, 1–4 November 2015; pp. 1–3. [Google Scholar]
- Qadami, F.; Molaeirad, A.; Alijanianzadeh, M.; Azizi, A.; Kamali, N. Localized Surface Plasmon Resonance (LSPR)-Based Nanobiosensor for Methamphetamin Measurement. Plasmonics 2018, 13, 2091–2098. [Google Scholar] [CrossRef]
- Semwal, V.; Gupta, B.D. LSPR and SPR Based Fiber Optic Cholesterol Sensor using Immobilization of Cholesterol Oxidase over Silver Nanoparticles Coated Graphene Oxide Nanosheets. IEEE Sens. J. 2018, 18, 1039–1046. [Google Scholar] [CrossRef]
- Wang, S.; Sun, X.M.; Peng, G.; Qi, Y.; Wang, Y.; Ren, J. The investigation of an LSPR refractive index sensor based on periodic gold nanorings array. J. Phys. D Appl. Phys. 2018, 51, 45101. [Google Scholar] [CrossRef]
- Malani, S.B.; Viswanath, P. Impact of ordering of gold nanohole arrays on refractive index sensing. JOSA B 2018, 35, 2501. [Google Scholar] [CrossRef]
- Liu, H.; Wang, M.; Wang, Q.; Li, H.; Ding, Y.; Zhu, C. Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes. Opt. Fiber Technol. 2018, 45, 1–7. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, L.; Che, X.; Huang, J.; Li, X.; Chen, W. Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A. Sens. Actuators B Chem. 2016, 235, 717–722. [Google Scholar] [CrossRef]
- Yang, J.; Tao, C.; Li, X.; Zhu, G.; Chen, W. Long-period fiber grating sensor with a styrene-acrylonitrile nano-film incorporating cryptophane A for methane detection. Opt. Express 2011, 19, 14696–14706. [Google Scholar]
- Min, W.; Wang, D.N.; Yang, M.; Jie, C.; Li, J. In-line Mach-Zehnder Interferometer and FBG with Pd film for simultaneous hydrogen and temperature detection. Sens. Actuators B Chem. 2014, 202, 893–896. [Google Scholar] [CrossRef]
- Chen, B.F.; Lee, C.S.; Elsberry, R.L. On Tropical Cyclone Size and Intensity Changes Associated with Two Types of Long-lasting Rainbands in Monsoonal Environments. Geophys. Res. Lett. 2014, 41, 2575–2581. [Google Scholar] [CrossRef]
- Derenko, S.; Härtling, T.; Unglaube, G.; Eng, L.M.; Opitz, J. A compact differential refractive index sensor based on localized surface plasmons. Sens. Actuators A Phys. 2014, 214, 252–258. [Google Scholar] [CrossRef]
- He, X.; O’Keefe, N.; Liu, Y.; Sun, D.; Uddin, H.; Nirmalathas, A.; Unnithan, R.R. Transmission Enhancement in Coaxial Hole Array Based Plasmonic Color Filter for Image Sensor Applications. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Wang, C.; Yang, J.; Shen, R.; Chen, W.; Che, X.; Li, X. High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH nanofilm. Opt. Express 2017, 25, 20258. [Google Scholar]
- Zhang, Y.N.; Zhou, T.; Bo, H.; Zhang, L.; Wu, Q. Simultaneous Measurement of Hydrogen Concentration and Temperature Based on Fiber Loop Mirror Combined with PCF. IEEE Sens. J. 2018, 18, 2369–2376. [Google Scholar] [CrossRef]
d [nm] | a [nm] | h [nm] | Resonance Peak [nm] | Full Width at Half Maximum (FWHM) [nm] | Extinction Ratio % |
---|---|---|---|---|---|
20 | 400 | 160 | 760 | 87 | 83.1 |
30 | 400 | 160 | 731 | 80 | 80.5 |
40 | 400 | 160 | 737 | 72 | 80.2 |
50 | 400 | 160 | 743 | 79 | 81.9 |
40 | 310 | 160 | 778 | 88 | 87.2 |
40 | 320 | 160 | 772 | 73 | 89.2 |
40 | 330 | 160 | 763 | 76 | 93.7 |
40 | 340 | 160 | 731 | 80 | 90 |
40 | 320 | 140 | 734 | 78 | 92.9 |
40 | 320 | 150 | 753 | 64 | 97.2 |
40 | 320 | 160 | 772 | 73 | 87.2 |
40 | 320 | 170 | 802 | 76 | 74 |
Group Number | Period | Height | Sensitivity |
---|---|---|---|
[nm/RIU] | |||
300 | 150 | 449.87 | |
320 | 150 | 441.05 | |
340 | 150 | 370.2 | |
300 | 160 | 530.4 | |
320 | 160 | 453.66 | |
340 | 160 | 372.9 | |
300 | 170 | 449.72 | |
320 | 170 | 473.63 | |
340 | 170 | 412.4 |
Group Number | Period | High | Thickness | Sensitivity | Increase Rate |
---|---|---|---|---|---|
t [nm] | [nm/RIU] | [%] | |||
300 | 150 | 20 | 533.24 | 18.5 | |
320 | 150 | 20 | 509.22 | 15.5 | |
340 | 150 | 20 | 390.9 | 5.6 | |
300 | 160 | 20 | 550.08 | 3.7 | |
320 | 160 | 20 | 532.71 | 17.4 | |
340 | 160 | 20 | 398.53 | 6.9 | |
300 | 170 | 20 | 486.06 | 8.1 | |
320 | 170 | 20 | 528.6 | 11.6 | |
340 | 170 | 20 | 457.86 | 11 |
Type of Gas | The Structure | The Sensitivity of Gas [nm/%] | Increase Rate [%] |
---|---|---|---|
CH4 | B5 | −1.04 | 159 |
A5 | −0.394 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Chen, C.; Zhang, Y.; Bai, B.; Tang, S. A High-Sensitivity Methane Sensor with Localized Surface Plasmon Resonance Behavior in an Improved Hexagonal Gold Nanoring Array. Sensors 2019, 19, 4803. https://doi.org/10.3390/s19214803
Liu H, Chen C, Zhang Y, Bai B, Tang S. A High-Sensitivity Methane Sensor with Localized Surface Plasmon Resonance Behavior in an Improved Hexagonal Gold Nanoring Array. Sensors. 2019; 19(21):4803. https://doi.org/10.3390/s19214803
Chicago/Turabian StyleLiu, Hai, Cong Chen, Yanzeng Zhang, Bingbing Bai, and Shoufeng Tang. 2019. "A High-Sensitivity Methane Sensor with Localized Surface Plasmon Resonance Behavior in an Improved Hexagonal Gold Nanoring Array" Sensors 19, no. 21: 4803. https://doi.org/10.3390/s19214803
APA StyleLiu, H., Chen, C., Zhang, Y., Bai, B., & Tang, S. (2019). A High-Sensitivity Methane Sensor with Localized Surface Plasmon Resonance Behavior in an Improved Hexagonal Gold Nanoring Array. Sensors, 19(21), 4803. https://doi.org/10.3390/s19214803