A Comprehensive Review of Microfluidic Water Quality Monitoring Sensors
Abstract
:1. Introduction
2. The Consequences of Water Pollutants on the Human Body
3. Microfluidic with Electrochemical Detection
3.1. Heavy Metal Detection
3.2. Nutrients
3.3. Pathogens
4. Microfluidic with Optical Detection
4.1. Heavy Metal
4.2. Nutrients
4.3. Pathogens
5. Discussion and Outlook
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AKD | alkylketene dimer |
ASV | anodic stripping voltammetry |
AuNP | gold nanoparticles |
BNC | Bayonet Neill–Concelman |
CFU | colony forming units |
CL | chemiluminescence |
CV | cyclic voltammetry |
E. coli | Escherichia coli |
EDC | ethyl-3-(3-dimethy-laminopropyl) carbodiimide hydrochloride |
EIP | electrochemical impedance spectroscopy |
EIS | electrochemical impedance spectroscopy |
f-MWCNT | functionalised- multiwall carbon nanotube |
FOCS | fiber-optic chemical sensor |
GCE | glassy carbon electrode |
GF | graphene foam |
LCR | inductance, capacitance, resistance |
LEDs | light-emitting diodes |
LoC | Lab-on-a-chip |
LOD | limit of detection |
LPS | lipopolysaccharide |
LTTC | low-temperature co-fired ceramics |
MB | methylene blue |
MCL | maximum contamination level |
MLB | magnetically labelled bacteria |
MSQ | methylsilsesquioxane |
MUA | 11-mercaptoundecanoic acid |
MWCNTs | multiwall carbon nanotubes |
NHS | n-hydrosuccinimide |
NiR | nitrate reductase |
OCC | occult cancer |
PDMS | polydimethylsiloxane |
PMMA | polymethylmethacrylate |
pDEP | positive dielectrophoretic |
POC | point-of-care |
QRE | quasi-reference electrode |
RGO | reduced graphene oxide |
SAM | self-assembled monolayer |
SERS | surface-enhanced Raman scattering |
SPR | surface plasmon resonance |
S. aureus | Staphylococcus aureus |
SWASV | square-wave anodic stripping voltammetry |
SWCNTs | single-walled carbon nanotubes |
SWV | square-wave voltammetry |
PADs | paper-based analytical devices |
PED | microfluidic paper-based electrochemical sensing device |
References
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566, 1552–1567. [Google Scholar] [CrossRef]
- Yao, H.; Qian, X.; Yin, H.; Gao, H.; Wang, Y. Regional Risk Assessment for Point Source Pollution Based on a Water Quality Model of the Taipu River, China. Risk Anal. Int. J. 2015, 35, 265–277. [Google Scholar] [CrossRef]
- Calderon, R.L. The Epidemiology of Chemical Contaminants of Drinking Water. Food Chem. Toxicol. 2000, 38, S13–S20. [Google Scholar] [CrossRef]
- Sekabira, K.; Origa, H.O.; Basamba, T.; Mutumba, G.; Kakudidi, E. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int. J. Environ. Sci. Technol. 2010, 7, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.Y.; Zhang, H.M.; Sojinu, S.O.; Liu, G.H.; Zhang, J.Q.; Ni, H.G. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China. Environ. Monit. Assess. 2015, 187, 4220. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.; Zou, Z.; Lee, K.K.; Ahn, C.H.; Bishop, P.L. State-of-the-art lab chip sensors for environmental water monitoring. Meas. Sci. Technol. 2011, 22, 032001. [Google Scholar] [CrossRef]
- Jan, A.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef]
- Weller, M. Immunoassays and biosensors for the detection of cyanobacterial toxins in water. Sensors 2013, 13, 15085–15112. [Google Scholar] [CrossRef]
- Ahmed, W.; Hughes, B.; Harwood, V. Current status of marker genes of Bacteroides and related taxa for identifying sewage pollution in environmental waters. Water 2016, 8, 231. [Google Scholar] [CrossRef]
- Kuczynski, D. Occurrence of pathogenic bacteria in surface water of an urban river in Argentina (Reconquista River, Buenos Aires). Int. J. Aquat. Sci. 2016, 7, 30–38. [Google Scholar]
- Schreiber, C.; Rechenburg, A.; Rind, E.; Kistemann, T. The impact of land use on microbial surface water pollution. Int. J. Hyg. Environ. Health 2015, 218, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Meng, F.; Zhou, Y.; Wang, Y.; Shi, P. Distributed water pollution source localization with mobile UV-visible spectrometer probes in wireless sensor networks. Sensors 2018, 18, 606. [Google Scholar] [CrossRef] [PubMed]
- Edition, F. Guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108. [Google Scholar]
- Yang, K.; Peretz-Soroka, H.; Liu, Y.; Lin, F. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones. Lab Chip 2016, 16, 943–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368. [Google Scholar] [CrossRef]
- Lafleur, J.P.; Joensson, A.; Senkbeil, S.; Kutter, J.P. Recent advances in lab-on-a-chip for biosensing applications. Biosens. Bioelectron. 2016, 76, 213–233. [Google Scholar] [CrossRef]
- Kou, S.; Cheng, D.; Sun, F.; Hsing, I.M. Microfluidics and microbial engineering. Lab Chip 2016, 16, 432–446. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, J.; Zhang, P.; Zhang, Y.; Miao, Y.; Gao, S.; Deng, Y.; Geng, L. Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection. Biosens. Bioelectron. 2018, 121, 272–280. [Google Scholar] [CrossRef]
- Dutse, S.W.; Yusof, N.A. Microfluidics-based lab-on-chip systems in DNA-based biosensing: An overview. Sensors 2011, 11, 5754–5768. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N.T.; Warkiani, M.E.; Li, W. Fundamentals and applications of inertial microfluidics: A review. Lab Chip 2016, 16, 10–34. [Google Scholar] [CrossRef] [PubMed]
- Samiei, E.; Tabrizian, M.; Hoorfar, M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 2016, 16, 2376–2396. [Google Scholar] [CrossRef] [PubMed]
- Yi-Qiang, F.; Hong-Liang, W.; Ke-Xin, G.; Jing-Ji, L.; Dong-Ping, C.; ZHANG, Y.J. Applications of Modular Microfluidics Technology. Chin. J. Anal. Chem. 2018, 46, 1863–1871. [Google Scholar]
- Andersson, H.; Van den Berg, A. Microfluidic devices for cellomics: A review. Sens. Actuators B Chem. 2003, 92, 315–325. [Google Scholar] [CrossRef]
- Du, G.; Fang, Q.; den Toonder, J.M. Microfluidics for cell-based high throughput screening platforms—A review. Anal. Chim. Acta 2016, 903, 36–50. [Google Scholar] [CrossRef]
- Reverté, L.; Prieto-Simón, B.; Campàs, M. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review. Anal. Chim. Acta 2016, 908, 8–21. [Google Scholar] [CrossRef]
- Mashaghi, S.; Abbaspourrad, A.; Weitz, D.A.; van Oijen, A.M. Droplet microfluidics: A tool for biology, chemistry and nanotechnology. TrAC Trends Anal. Chem. 2016, 82, 118–125. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, G.S.; Chiu, D.T. Disposable microfluidic devices: Fabrication, function, and application. BioTechniques 2005, 38, 429–446. [Google Scholar] [CrossRef]
- Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [Google Scholar] [CrossRef]
- Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The upcoming 3D-printing revolution in microfluidics. Lab Chip 2016, 16, 1720–1742. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.G.; Park, K.J.; Seok, S.; Shin, S.; Park, J.Y.; Heo, Y.S.; Lee, S.J.; Lee, T.J. 3D printed modules for integrated microfluidic devices. RSC Adv. 2014, 4, 32876–32880. [Google Scholar] [CrossRef]
- Martínez-López, J.; Mojica, M.; Rodríguez, C.; Siller, H. Xurography as a rapid fabrication alternative for point-of-care devices: Assessment of passive micromixers. Sensors 2016, 16, 705. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, A.A.; Popma, A.; Wong, W.; Nguyen, T.; Pan, Y.; Xu, J. 3D printing: An emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid. Nanofluid. 2016, 20, 50. [Google Scholar] [CrossRef]
- Waheed, S.; Cabot, J.M.; Macdonald, N.P.; Lewis, T.; Guijt, R.M.; Paull, B.; Breadmore, M.C. 3D printed microfluidic devices: Enablers and barriers. Lab Chip 2016, 16, 1993–2013. [Google Scholar] [CrossRef]
- Antony, R.; Nandagopal, M.G.; Sreekumar, N.; Selvaraju, N. Detection principles and development of microfluidic sensors in the last decade. Microsyst. Technol. 2014, 20, 1051–1061. [Google Scholar] [CrossRef]
- Jokerst, J.C.; Emory, J.M.; Henry, C.S. Advances in microfluidics for environmental analysis. Analyst 2012, 137, 24–34. [Google Scholar] [CrossRef]
- Li, H.F.; Lin, J.M. Applications of microfluidic systems in environmental analysis. Anal. Bioanal. Chem. 2009, 393, 555–567. [Google Scholar] [CrossRef]
- Pol, R.; Céspedes, F.; Gabriel, D.; Baeza, M. Microfluidic lab-on-a-chip platforms for environmental monitoring. TrAC Trends Anal. Chem. 2017, 95, 62–68. [Google Scholar] [CrossRef]
- Ward, K.; Fan, Z.H. Mixing in microfluidic devices and enhancement methods. J. Micromech. Microeng. 2015, 25, 094001. [Google Scholar] [CrossRef]
- Lynn, N.S., Jr.; Martínez-López, J.I.; Bocková, M.; Adam, P.; Coello, V.; Siller, H.R.; Homola, J. Biosensing enhancement using passive mixing structures for microarray-based sensors. Biosens. Bioelectron. 2014, 54, 506–514. [Google Scholar] [CrossRef]
- Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured sensors for detection of heavy metals: A review. ACS Sustain. Chem. Eng. 2013, 1, 713–723. [Google Scholar] [CrossRef]
- Azmi, A.; Azman, A.A.; Ibrahim, S.; Yunus, M.A.M. Techniques in advancing the capabilities of various nitrate detection methods: A review. Int. J. Smart Sens. Intell. Syst. 2017, 10, 223–261. [Google Scholar] [CrossRef]
- Mairhofer, J.; Roppert, K.; Ertl, P. Microfluidic systems for pathogen sensing: A review. Sensors 2009, 9, 4804–4823. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, B.; Soleimani, N.; Rabiee, N.; Kalbasi, A.; Karimi, M.; Hamblin, M.R. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron. 2018, 117, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Luqueno, F.; López-Valdez, F.; Gamero-Melo, P.; Luna-Suárez, S.; Aguilera-González, E.; Martínez, A.; García-Guillermo, M.; Hernández-Martínez, G.; Herrera-Mendoza, R.; Álvarez-Garza, M.; et al. Heavy metal pollution in drinking water-a global risk for human health: A review. Afr. J. Environ. Sci. Technol. 2013, 7, 567–584. [Google Scholar]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mazumder, M.A.J.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016, 569, 476–488. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Springer: Basel, Switzerland, 2012; pp. 133–164. [Google Scholar]
- Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. [Google Scholar]
- Testa, S.M.; Guertin, J.; Jacobs, J.; Avakian, C. Sources of Chromium Contamination in Soil and Groundwater; CRC Press: Boca Raton, FL, USA, 2004; pp. 143–164. [Google Scholar]
- Cempel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Polish J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Armah, F.A.; Obiri, S.; Yawson, D.O.; Onumah, E.E.; Yengoh, G.T.; Afrifa, E.K.; Odoi, J.O. Anthropogenic sources and environmentally relevant concentrations of heavy metals in surface water of a mining district in Ghana: A multivariate statistical approach. J. Environ. Sci. Health Part A 2010, 45, 1804–1813. [Google Scholar] [CrossRef]
- Borah, K.K.; Bhuyan, B.; Sarma, H.P. Lead, arsenic, fluoride, and iron contamination of drinking water in the tea garden belt of Darrang district, Assam, India. Environ. Monit. Assess. 2010, 169, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Phan, K.; Sthiannopkao, S.; Kim, K.W.; Wong, M.H.; Sao, V.; Hashim, J.H.; Yasin, M.S.M.; Aljunid, S.M. Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Res. 2010, 44, 5777–5788. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tchounwou, P.B.; Centeno, J.A.; Patlolla, A.K. Arsenic toxicity, mutagenesis, and carcinogenesis—A health risk assessment and management approach. Mol. Cell. Biochem. 2004, 255, 47–55. [Google Scholar] [CrossRef]
- Wang, N.X.; Liu, Y.Y.; Wei, Z.B.; Yang, L.Y.; Miao, A.J. Waterborne and Dietborne toxicity of inorganic arsenic to the freshwater zooplankton Daphnia magna. Environ. Sci. Technol. 2018, 52, 8912–8919. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Jiang, Y.; Hu, P.; Chang, R.; Yao, S.; Wang, B.; Li, X.; Zhou, Q.; Qiao, Y. Modification of association between prior lung disease and lung cancer by inhaled arsenic: A prospective occupational-based cohort study in Yunnan, China. J. Exposure Sci. Environ. Epidemiol. 2016, 26, 464. [Google Scholar] [CrossRef]
- Gillis, B.S.; Arbieva, Z.; Gavin, I.M. Analysis of lead toxicity in human cells. BMC Genom. 2012, 13, 344. [Google Scholar] [CrossRef]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef]
- Budnik, L.T.; Casteleyn, L. Mercury pollution in modern times and its socio-medical consequences. Sci. Total Environ. 2019, 654, 720–734. [Google Scholar] [CrossRef]
- Houston, M.C. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J. Clin. Hypertens. 2011, 13, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Carocci, A.; Rovito, N.; Sinicropi, M.S.; Genchi, G. Mercury toxicity and neurodegenerative effects. In Reviews of Environmental Contamination and Toxicology; Springer: Cham, Switzerland, 2014; pp. 1–18. [Google Scholar]
- Bernhoft, R.A. Cadmium toxicity and treatment. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Moulis, J.M.; Thévenod, F. New perspectives in cadmium toxicity: An introduction. BioMetals 2010, 23, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Ravindran, G.; Krishnamurthy, V. A brief review on the effect of cadmium toxicity: From cellular to organ level. Int. J. Biotechnol. Res. 2013, 3, 17–36. [Google Scholar]
- Mohanty, M.; Patra, H.K. Attenuation of chromium toxicity by bioremediation technology. In Reviews of Environmental Contamination and Toxicology Volume 210; Springer: New York, NY, USA, 2011; pp. 1–34. [Google Scholar]
- Dotaniya, M.; Thakur, J.; Meena, V.; Jajoria, D.; Rathor, G. Chromium pollution: A threat to environment—A review. Agric. Rev. 2014, 35. [Google Scholar] [CrossRef]
- Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res. 2008, 128, 412. [Google Scholar]
- Yeganeh, M.; Afyuni, M.; Khoshgoftarmanesh, A.H.; Khodakarami, L.; Amini, M.; Soffyanian, A.R.; Schulin, R. Mapping of human health risks arising from soil nickel and mercury contamination. J. Hazard. Mater. 2013, 244, 225–239. [Google Scholar] [CrossRef]
- Klotz, K.; Weistenhöfer, W.; Neff, F.; Hartwig, A.; van Thriel, C.; Drexler, H. The health effects of aluminum exposure. Deutsches Ärzteblatt Int. 2017, 114, 653. [Google Scholar] [CrossRef]
- Panhwar, A.H.; Kazi, T.G.; Afridi, H.I.; Arain, S.A.; Arain, M.S.; Brahaman, K.D.; Arain, S.S. Correlation of cadmium and aluminum in blood samples of kidney disorder patients with drinking water and tobacco smoking: Related health risk. Environ. Geochem. Health 2016, 38, 265–274. [Google Scholar] [CrossRef]
- Agrawal, A.; Pandey, R.S.; Sharma, B. Water pollution with special reference to pesticide contamination in India. J. Water Resour. Protect. 2010, 2, 432. [Google Scholar] [CrossRef]
- Kilfoy, B.A.; Zhang, Y.; Park, Y.; Holford, T.R.; Schatzkin, A.; Hollenbeck, A.; Ward, M.H. Dietary nitrate and nitrite and the risk of thyroid cancer in the NIH-AARP Diet and Health Study. Int. J. Cancer 2011, 129, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Fajerwerg, K.; Ynam, V.; Chaudret, B.; Garçon, V.; Thouron, D.; Comtat, M. An original nitrate sensor based on silver nanoparticles electrodeposited on a gold electrode. Electrochem. Commun. 2010, 12, 1439–1441. [Google Scholar] [CrossRef]
- Bagheri, H.; Hajian, A.; Rezaei, M.; Shirzadmehr, A. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. J. Hazard. Mater. 2017, 324, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Badea, M.; Amine, A.; Palleschi, G.; Moscone, D.; Volpe, G.; Curulli, A. New electrochemical sensors for detection of nitrites and nitrates. J. Electroanal. Chem. 2001, 509, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wu, H.; Qian, H.; Gao, Y. Assessing nitrate and fluoride contaminants in drinking water and their health risk of rural residents living in a semiarid region of Northwest China. Expo. Health 2017, 9, 183–195. [Google Scholar] [CrossRef]
- Lipp, E.K.; Farrah, S.A.; Rose, J.B. Assessment and impact of microbial fecal pollution and human enteric pathogens in a coastal community. Mar. Pollut. Bull. 2001, 42, 286–293. [Google Scholar] [CrossRef]
- Cabral, J.P. Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health 2010, 7, 3657–3703. [Google Scholar] [CrossRef]
- Pandey, P.K.; Kass, P.H.; Soupir, M.L.; Biswas, S.; Singh, V.P. Contamination of water resources by pathogenic bacteria. Amb Express 2014, 4, 51. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J. Cancer Prev. 2015, 20, 232. [Google Scholar] [CrossRef]
- Chung, J.Y.; Yu, S.D.; Hong, Y.S. Environmental source of arsenic exposure. J. Prev. Med. Public Health 2014, 47, 253. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Huang, X.J. Voltammetric determination of inorganic arsenic. TrAC Trends Anal. Chem. 2014, 60, 25–35. [Google Scholar] [CrossRef]
- Francesconi, K.A.; Kuehnelt, D. Determination of arsenic species: A critical review of methods and applications, 2000–2003. Analyst 2004, 129, 373–395. [Google Scholar] [CrossRef] [PubMed]
- Gunduz, O.; Simsek, C.; Hasozbek, A. Arsenic pollution in the groundwater of Simav Plain, Turkey: Its impact on water quality and human health. Water Air Soil Pollut. 2010, 205, 43. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Samal, A.; Majumdar, J.; Santra, S. Arsenic contamination in rice, wheat, pulses, and vegetables: A study in an arsenic affected area of West Bengal, India. Water Air Soil Pollut. 2010, 213, 3–13. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Mukhopadhyay, S.C. Detection methods of nitrate in water: A review. Sens. Actuators A Phys. 2018, 280, 210–221. [Google Scholar] [CrossRef]
- Bridle, H.; Miller, B.; Desmulliez, M.P. Application of microfluidics in waterborne pathogen monitoring: A review. Water Res. 2014, 55, 256–271. [Google Scholar] [CrossRef]
- Sobota, D.J.; Compton, J.E.; McCrackin, M.L.; Singh, S. Cost of reactive nitrogen release from human activities to the environment in the United States. Environ. Res. Lett. 2015, 10, 025006. [Google Scholar] [CrossRef]
- Puckett, L.J. Identifying the major sources of nutrient water pollution. Environ. Sci. Technol. 1995, 29, 408A–414A. [Google Scholar] [CrossRef]
- Payment, P.; Locas, A. Pathogens in water: Value and limits of correlation with microbial indicators. Groundwater 2011, 49, 4–11. [Google Scholar] [CrossRef]
- Ashbolt, N.J. Microbial contamination of drinking water and human health from community water systems. Curr. Environ. Health Rep. 2015, 2, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Sadowsky, M.J. Escherichia coli in the environment: Implications for water quality and human health. Microbes Environ. 2008, 23, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Figueras, M.; Borrego, J.J. New perspectives in monitoring drinking water microbial quality. Int. J. Environ. Res. Public Health 2010, 7, 4179–4202. [Google Scholar] [CrossRef] [PubMed]
- Lacher, N.A.; Garrison, K.E.; Martin, R.S.; Lunte, S.M. Microchip capillary electrophoresis/electrochemistry. Electrophoresis 2001, 22, 2526–2536. [Google Scholar] [CrossRef]
- Jung, W.; Jang, A.; Bishop, P.L.; Ahn, C.H. A polymer lab chip sensor with microfabricated planar silver electrode for continuous and on-site heavy metal measurement. Sens. Actuators B Chem. 2011, 155, 145–153. [Google Scholar] [CrossRef]
- Kudr, J.; Zitka, O.; Klimanek, M.; Vrba, R.; Adam, V. Microfluidic electrochemical devices for pollution analysis—A review. Sens. Actuators B Chem. 2017, 246, 578–590. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, J.; Du, Y.; Yang, X.; Wang, E. Microfabricated on-chip integrated Au–Ag–Au three-electrode system for in situ mercury ion determination. Analyst 2010, 135, 1010–1014. [Google Scholar] [CrossRef]
- Kim, U.; VanderGiessen, J.; Demaree, B.; Reynolds, M.; Perricone, K. Development of low-cost plastic microfluidic sensors toward rapid and point-of-use detection of arsenic in drinking water for global health. In Proceedings of the 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), Rotterdam, The Netherlands, 31 October–2 November 2013; pp. 113–117. [Google Scholar]
- Han, K.N.; Li, C.A.; Bui, M.P.N.; Pham, X.H.; Kim, B.S.; Choa, Y.H.; Lee, E.K.; Seong, G.H. On-chip electrochemical detection of bio/chemical molecule by nanostructures fabricated in a microfluidic channel. Sens. Actuators B Chem. 2013, 177, 472–477. [Google Scholar] [CrossRef]
- Avuthu, S.G.R.; Wabeke, J.T.; Narakathu, B.B.; Maddipatla, D.; Arachchilage, J.S.; Obare, S.O.; Atashbar, M.Z. A screen printed phenanthroline-based flexible electrochemical sensor for selective detection of toxic heavy metal ions. IEEE Sens. J. 2016, 16, 8678–8684. [Google Scholar] [CrossRef]
- Lin, Y.; Gritsenko, D.; Feng, S.; Teh, Y.C.; Lu, X.; Xu, J. Detection of heavy metal by paper-based microfluidics. Biosens. Bioelectron. 2016, 83, 256–266. [Google Scholar] [CrossRef]
- Busa, L.; Mohammadi, S.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Advances in microfluidic paper-based analytical devices for food and water analysis. Micromachines 2016, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Lisowski, P.; Zarzycki, P.K. Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): Development, applications and future trends. Chromatographia 2013, 76, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.M.; Wang, Y.N. Detection methods and applications of microfluidic paper-based analytical devices. TrAC Trends Anal. Chem. 2018. [Google Scholar] [CrossRef]
- Carrell, C.; Kava, A.; Nguyen, M.; Menger, R.; Munshi, Z.; Call, Z.; Nussbaum, M.; Henry, C. Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectron. Eng. 2019, 206, 45–54. [Google Scholar] [CrossRef]
- Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on microfluidic paper-based analytical devices towards commercialisation. Anal. Chim. Acta 2018, 1001, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Tang, F.; Xing, H.; Zheng, H.; Lianhua, B.; Wei, W. Electrochemical detection of Pb and Cd in paper-based microfluidic devices. J. Braz. Chem. Soc. 2012, 23, 1124–1130. [Google Scholar] [CrossRef]
- Cortés-Salazar, F.; Beggah, S.; van der Meer, J.R.; Girault, H.H. Electrochemical As (III) whole-cell based biochip sensor. Biosens. Bioelectron. 2013, 47, 237–242. [Google Scholar] [CrossRef]
- Gartia, M.R.; Braunschweig, B.; Chang, T.W.; Moinzadeh, P.; Minsker, B.S.; Agha, G.; Wieckowski, A.; Keefer, L.L.; Liu, G.L. The microelectronic wireless nitrate sensor network for environmental water monitoring. J. Environ. Monit. 2012, 14, 3068–3075. [Google Scholar] [CrossRef]
- Wang, X.; Gartia, M.R.; Jiang, J.; Chang, T.W.; Qian, J.; Liu, Y.; Liu, X.; Liu, G.L. Audio jack based miniaturized mobile phone electrochemical sensing platform. Sens. Actuators B Chem. 2015, 209, 677–685. [Google Scholar] [CrossRef]
- Calvo-López, A.; Arasa-Puig, E.; Puyol, M.; Casalta, J.M.; Alonso-Chamarro, J. Biparametric potentiometric analytical microsystem for nitrate and potassium monitoring in water recycling processes for manned space missions. Anal. Chim. Acta 2013, 804, 190–196. [Google Scholar] [CrossRef]
- Cuartero, M.; Crespo, G.A.; Bakker, E. Tandem electrochemical desalination–potentiometric nitrate sensing for seawater analysis. Anal. Chem. 2015, 87, 8084–8089. [Google Scholar] [CrossRef]
- Ali, M.A.; Jiao, Y.; Tabassum, S.; Wang, Y.; Jiang, H.; Dong, L. Electrochemical detection of nitrate ions in soil water using graphene foam modified by TiO2 nanofibers and enzyme molecules. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 238–241. [Google Scholar]
- Kim, U.; Ghanbari, S.; Ravikumar, A.; Seubert, J.; Figueira, S. Rapid, affordable, and point-of-care water monitoring via a microfluidic DNA sensor and a mobile interface for global health. IEEE J. Transl. Eng. Health Med. 2013, 1, 3700207. [Google Scholar] [PubMed]
- Li, X.; Scida, K.; Crooks, R.M. Detection of hepatitis B virus DNA with a paper electrochemical sensor. Anal. Chem. 2015, 87, 9009–9015. [Google Scholar] [CrossRef] [PubMed]
- Altintas, Z.; Akgun, M.; Kokturk, G.; Uludag, Y. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens. Bioelectron. 2018, 100, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jung, T.; Kim, Y.; Lee, C.; Woo, K.; Seol, J.H.; Yang, S. A microfluidic device for label-free detection of Escherichia coli in drinking water using positive dielectrophoretic focusing, capturing, and impedance measurement. Biosens. Bioelectron. 2015, 74, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, X.; Chao, R.; Ren, Y.; Hu, C.; Xu, Z.; Liu, G.L. Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system. Sens. Actuators B Chem. 2014, 193, 653–659. [Google Scholar] [CrossRef]
- Clausen, C.; Dimaki, M.; Bertelsen, C.; Skands, G.; Rodriguez-Trujillo, R.; Thomsen, J.; Svendsen, W. Bacteria Detection and Differentiation Using Impedance Flow Cytometry. Sensors 2018, 18, 3496. [Google Scholar] [CrossRef]
- Maw, M.; Wang, J.; Yu, K.; Wang, Y.; Dai, B.; Wu, X.; Pan, X. An Examination of the Validity of MRPS Method for the Detection of Label-free E. Coli and Enterococci in Ships Ballast Water. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 171, p. 012032. [Google Scholar]
- Ghosh Dastider, S.; Barizuddin, S.; Yuksek, N.S.; Dweik, M.; Almasri, M.F. Efficient and rapid detection of Salmonella using microfluidic impedance based sensing. J. Sens. 2015, 2015, 293461. [Google Scholar] [CrossRef]
- Bio Nano Consulting Product Page. Available online: http://www.bio-nano-consulting.com/product-developmentdrinksafe (accessed on 22 October 2019).
- PalmSense Compact Electrochemical Interfaces ItalSens IS-C Page. Available online: https://www.palmsens.com/product/italsens-is-c/ (accessed on 22 October 2019).
- gtq silicon technologies for sensing Services and Product Page. Available online: http://gtq.imb-cnm.csic.es/en/services-and-products/technology-offer/fv00620231869 (accessed on 22 October 2019).
- MEDIRAY+ Ion Selective Electrodes Page. Available online: https://www.mediray.co.nz/laboratory/shop/the-hanna-range/ion-selective-electrodes-ises/ion-selective-electrodes/nitrate-combination-ion-selective-electrode-hi4113/ (accessed on 22 October 2019).
- xylem Let’s Solve Water Product Page. Available online: https://www.xylemanalytics.com/en/general-product/id-151/ISE-combination-sensor-for-ammonium-and-nitrate—WTW (accessed on 22 October 2019).
- Vernier Nitrate Ion-Selective Electrode Page. Available online: https://www.vernier.com/products/sensors/ion-selective-electrodes/labquest-ise/no3-bta/ (accessed on 22 October 2019).
- HANNA instruments Nitrate Combination Ion Selective Electrode Page. Available online: https://hannainst.com/hi4113-nitrate-combination-ion-selective-electrode.html (accessed on 22 October 2019).
- Khoshsafar, H.; Bagheri, H.; Rezaei, M.; Shirzadmehr, A.; Hajian, A.; Sepehri, Z. Magnetic carbon paste electrode modified with a high performance composite based on molecularly imprinted carbon nanotubes for sensitive determination of levofloxacin. J. Electrochem. Soc. 2016, 163, B422–B427. [Google Scholar] [CrossRef]
- Randviir, E.P.; Banks, C.E. Electrochemical impedance spectroscopy: an overview of bioanalytical applications. Anal. Methods 2013, 5, 1098–1115. [Google Scholar] [CrossRef]
- Boehm, D.A.; Gottlieb, P.A.; Hua, S.Z. On-chip microfluidic biosensor for bacterial detection and identification. Sens. Actuators B Chem. 2007, 126, 508–514. [Google Scholar] [CrossRef]
- Sun, T.; Morgan, H. Single-cell microfluidic impedance cytometry: A review. Microfluid. Nanofluid. 2010, 8, 423–443. [Google Scholar] [CrossRef]
- Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; DeRosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M. Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors 2015, 15, 30011–30031. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Y.J.; Wei, J.F.; Xu, J.R.; Wang, Y.H.; Zheng, G.X. Based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone. Anal. Bioanal. Chem. 2014, 406, 2799–2807. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Fang, X.; Li, H.; Cao, H.; Kong, J. A simple paper-based colorimetric device for rapid mercury (II) assay. Sci. Rep. 2016, 6, 31948. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; He, S.; Liu, G.; Wang, L.; Song, S. A Portable and Power-Free Microfluidic Device for Rapid and Sensitive Lead (Pb2+) Detection. Sensors 2012, 12, 9467–9475. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.; Arun, R.K.; Chanda, N. A paper based microfluidic device for the detection of arsenic using a gold nanosensor. RSC Adv. 2014, 4, 59558–59561. [Google Scholar] [CrossRef]
- Chowdury, M.; Walji, N.; Mahmud, M.; MacDonald, B. Paper-based microfluidic device with a gold nanosensor to detect arsenic contamination of groundwater in Bangladesh. Micromachines 2017, 8, 71. [Google Scholar] [CrossRef]
- Bonyar, A.; Nagy, P.; Mayer, V.; Vitéz, A.; Gerecs, A.; Sántha, H.; Harsányi, G. A colorimetry based, semi-automated portable sensor device for the detection of arsenic in drinking water. Sens. Actuators B Chem. 2017, 251, 1042–1049. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Li, B.; Wang, X.; Zhang, Z.; Wang, Z.; Han, J.; Chen, L. Three-dimensional paper-based microfluidic chip device for multiplexed fluorescence detection of Cu2+ and Hg2+ ions based on ion imprinting technology. Sens. Actuators B Chem. 2017, 251, 224–233. [Google Scholar] [CrossRef]
- Truffer, F.; Buffi, N.; Merulla, D.; Beggah, S.; Van Lintel, H.; Renaud, P.; van der Meer, J.R.; Geiser, M. Compact portable biosensor for arsenic detection in aqueous samples with Escherichia coli bioreporter cells. Rev. Sci. Instrum. 2014, 85, 015120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theytaz, J.; Braschler, T.; Van Lintel, H.; Renaud, P.; Diesel, E.; Merulla, D.; Van der Meer, J. Biochip with E. coli bacteria for detection of arsenic in drinking water. Procedia Chem. 2009, 1, 1003–1006. [Google Scholar] [CrossRef]
- Qi, N.; Li, B.; You, H.; Zhang, W.; Fu, L.; Wang, Y.; Chen, L. Surface-enhanced Raman scattering on a zigzag microfluidic chip: Towards high-sensitivity detection of As (III) ions. Anal. Methods 2014, 6, 4077–4082. [Google Scholar] [CrossRef]
- Som-Aum, W.; Li, H.; Liu, J.; Lin, J.M. Determination of arsenate by sorption pre-concentration on polystyrene beads packed in a microfluidic device with chemiluminescence detection. Analyst 2008, 133, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Cogan, D.; Fay, C.; Boyle, D.; Osborne, C.; Kent, N.; Cleary, J.; Diamond, D. Development of a low cost microfluidic sensor for the direct determination of nitrate using chromotropic acid in natural waters. Anal. Methods 2015, 7, 5396–5405. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, C.J.; Tao, T.; Duan, M.; Fang, S.W.; Zheng, M. A miniaturized fiber-optic colorimetric sensor for nitrite determination by coupling with a microfluidic capillary waveguide. Anal. Bioanal. Chem. 2016, 408, 3413–3423. [Google Scholar] [CrossRef]
- Khanfar, M.; Al-Faqheri, W.; Al-Halhouli, A.A. Low cost lab on chip for the colorimetric detection of nitrate in mineral water products. Sensors 2017, 17, 2345. [Google Scholar] [CrossRef]
- Jayawardane, B.M.; Wei, S.; McKelvie, I.D.; Kolev, S.D. Microfluidic paper-based analytical device for the determination of nitrite and nitrate. Anal. Chem. 2014, 86, 7274–7279. [Google Scholar] [CrossRef]
- Beaton, A.D.; Cardwell, C.L.; Thomas, R.S.; Sieben, V.J.; Legiret, F.E.; Waugh, E.M.; Statham, P.J.; Mowlem, M.C.; Morgan, H. Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters. Environ. Sci. Technol. 2012, 46, 9548–9556. [Google Scholar] [CrossRef]
- Vincent, A.G.; Pascal, R.W.; Beaton, A.D.; Walk, J.; Hopkins, J.E.; Woodward, E.M.S.; Mowlem, M.; Lohan, M.C. Nitrate drawdown during a shelf sea spring bloom revealed using a novel microfluidic in situ chemical sensor deployed within an autonomous underwater glider. Mar. Chem. 2018, 205, 29–36. [Google Scholar] [CrossRef]
- Dharmasiri, U.; Witek, M.A.; Adams, A.A.; Osiri, J.K.; Hupert, M.L.; Bianchi, T.S.; Roelke, D.L.; Soper, S.A. Enrichment and detection of Escherichia coli O157: H7 from water samples using an antibody modified microfluidic chip. Anal. Chem. 2010, 82, 2844–2849. [Google Scholar] [CrossRef] [PubMed]
- Golberg, A.; Linshiz, G.; Kravets, I.; Stawski, N.; Hillson, N.J.; Yarmush, M.L.; Marks, R.S.; Konry, T. Cloud-enabled microscopy and droplet microfluidic platform for specific detection of Escherichia coli in water. PLoS ONE 2014, 9, e86341. [Google Scholar] [CrossRef] [PubMed]
- Malec, A.; Kokkinis, G.; Haiden, C.; Giouroudi, I. Biosensing system for concentration quantification of magnetically labeled E. coli in water samples. Sensors 2018, 18, 2250. [Google Scholar] [CrossRef]
- San Park, T.; Yoon, J.Y. Smartphone detection of Escherichia coli from field water samples on paper microfluidics. IEEE Sens. J. 2014, 15, 1902–1907. [Google Scholar] [CrossRef]
- Tokel, O.; Yildiz, U.H.; Inci, F.; Durmus, N.G.; Ekiz, O.O.; Turker, B.; Cetin, C.; Rao, S.; Sridhar, K.; Natarajan, N.; et al. Portable microfluidic integrated plasmonic platform for pathogen detection. Sci. Rep. 2015, 5, 9152. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, C.; Xing, D. Integrated microfluidic reverse transcription-polymerase chain reaction for rapid detection of food-or waterborne pathogenic rotavirus. Anal. Biochem. 2011, 415, 87–96. [Google Scholar] [CrossRef]
- Boehle, K.E.; Gilliand, J.; Wheeldon, C.R.; Holder, A.; Adkins, J.A.; Geiss, B.J.; Ryan, E.P.; Henry, C.S. Utilizing Paper-Based Devices for Antimicrobial-Resistant Bacteria Detection. Angew. Chem. Int. Ed. 2017, 56, 6886–6890. [Google Scholar] [CrossRef]
- FONDRIEST ENVIRONMENTAL PRODUCTS Hach Arsenic Test Kit Page. Available online: https://www.fondriest.com/hach-arsenic-test-kit.htm (accessed on 22 October 2019).
- FilterWater.com Arsenic Quick Test Kit Page. Available online: http://www.filterwater.com/p-209-arsenic-quick-test-kit-100-tests.aspx (accessed on 22 October 2019).
- Palintest Water analysis technology Arsenator—Digital Arsenic Test Page. Available online: https://www.palintest.com/products/arsenator/ (accessed on 22 October 2019).
- P S Analytical “Applying the Power of Atomic Fluorescence” ARSENIC Page. Available online: http://psanalytical.com/information/asarsenic.html (accessed on 22 October 2019).
- ChemSee HEAVY METAL DETECTORS Page. Available online: https://www.chemsee.com/residential/heavy-metal-detector-products/ (accessed on 22 October 2019).
- HANNA instruments Nitrate-Nitrogen Portable Photometer Page. Available online: https://hannainst.com/hi96728-nitrate-portable-photometer.html (accessed on 22 October 2019).
- HydroMetrics Home Page. Available online: http://www.hydrometrics.co.nz/ (accessed on 22 October 2019).
- OTT HydroMet Product Page. Available online: https://www.ott.com/products/water-quality-2/ott-econ-2439/ (accessed on 22 October 2019).
- BioVision Incorporated PCR Detection Kits Page. Available online: https://www.biovision.com/pcr-campylobacter-detection-kit.html (accessed on 22 October 2019).
- Li, X.; Ballerini, D.R.; Shen, W. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 2012, 6, 011301. [Google Scholar] [CrossRef]
- Mentele, M.M.; Cunningham, J.; Koehler, K.; Volckens, J.; Henry, C.S. Microfluidic paper-based analytical device for particulate metals. Anal. Chem. 2012, 84, 4474–4480. [Google Scholar] [CrossRef]
- Trang, P.T.K.; Berg, M.; Viet, P.H.; Mui, N.V.; van der Meer, J.R. Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ. Sci. Technol. 2005, 39, 7625–7630. [Google Scholar] [CrossRef]
- Buffi, N.; Merulla, D.; Beutier, J.; Barbaud, F.; Beggah, S.; Van Lintel, H.; Renaud, P.; van der Meer, J.R. Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples. Lab Chip 2011, 11, 2369–2377. [Google Scholar] [CrossRef] [PubMed]
- Dutt, J.; Davis, J. Current strategies in nitrite detection and their application to field analysis. J. Environ. Monit. 2002, 4, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Monton, M.R.N.; Zhang, X.; Filipe, C.D.; Pelton, R.; Brennan, J.D. Hydrophobic sol–gel channel patterning strategies for paper-based microfluidics. Lab Chip 2014, 14, 691–695. [Google Scholar] [CrossRef] [PubMed]
Contaminant MCL (mg/L) | Cancer | Developmental/ Reproductive | Neurologic | Other | Sources | Ref. |
---|---|---|---|---|---|---|
Arsenic (0.01) | Skin, internal | SAB | Peripheral | Cardiovascular, immunologic, dermatologic | Geothermal activity, agricultural application, mining and smelting, industrial applications, industrial and electronics wastes | [54,55,56,57,58,59] |
Lead (0.01) | Internal (OCC) | Birth defects | Autism, dyslexia, hyperactivity | Haemoprotein, weight loss, muscular weakness, paralysis, kidney damage | Natural deposits, mining, manufacturing process, and fossil fuel burning | [58,60,61] |
Mercury (0.002) | Internal | Damage to fetus | Neurobehavioral disorders | Cardiovascular, thyroid, asthma, nausea and vomiting, diarrhea, skin rashes, cardiovascular | Natural deposits, land runoff agricultural and industrial applications, paper and pulp preservatives | [58,62,63,64] |
Cadmium (0.004) | Pancreatic ovarian breast | Preterm birth, LBW | Neuron cell death | Leading to kidney disease, oxidative stress, osteoporosis, DNA damage | Natural deposits, mining, smelting, tobacco smoking, disposal of sewage | [58,65,66,67] |
Chromium (0.05) | Lung and gastrointestinal | NA | NA | Nausea and vomiting, low blood sugar, damage to liver and kidney, dermatological | Natural deposits in soil and rocks, volcano irruption, coal and oil combustion, sewage sludge, cement production | [47,58,68,69] |
Nickel (0.02) | Lung and nasal | NA | NA | Lung disease, skin diseases, liver toxicity | Volcanic eruption, forest fires, industrial and domestic wastewater, sewage sludge | [70,71] |
Aluminum (0.05 to 0.2) | NA | NA | NA | Nausea and vomiting, mouth ulcers, diarrhea, skin rashes, arthritic pain | Industrial applications | [58,72,73] |
Iron (0.3) | Lung | NA | NA | Gastrointestinal bleeding, vomiting and diarrhea | Natural deposits, corroded iron pipes | [58] |
Nitrate (50) | Internal | SAB blue baby syndrome | NA | Gastric problems, Parkinson’s disease | Natural deposits, agricultural usage, animal waste, septic tanks, sewage sludge | [74,75] |
Nitrite (0.2) | Blue baby syndrome | Gastric problems | Natural deposits, agricultural usage, animal waste, septic tanks | [76,77,78,79] | ||
Pesticide- 1,3-dichloropropene (0.02) | Carcinogenic | LBW | NA tumors | Skin irritations | Agricultural applications | [74] |
E. coli (less than 1/100 mL) | NA | NA | NA | Kidney failure, anemia, diarrhea, and other serious health problems | sewage leakage, animal waste | [80,81] |
Rotavirus Zero | NA | NA | NA | Vomiting, dehydration, severe fatigue | disposal of untreated wastewater | [46] |
Protozoa (Less than 1(oo) cyst/100L) | NA | NA | NA | Diarrhea, fatigue, nausea, abdominal cramps | Faecal contamination | [82] |
Electrochemical Methods | |||||||
---|---|---|---|---|---|---|---|
Target Analyte | Detection Principle | Sensing Element | Sensing Material | Substrate | LOD | Real Sample | Ref. |
Hg+2 | ASV | Electrode system | WE: Au | PDMS | 3 ppb | No | [101] |
CE: Au | |||||||
RE: Ag | |||||||
Pb+2 and Hg+2 | CV | Electrode system | WE: carbon | Polyethylene terephthalate | 50 M each | No | [104] |
CE: Ag | |||||||
RE: Ag/Cl | |||||||
Pb+2 | SWASV | Electrode system | WE: Ag | Polymer | 0.55 ppb | No | [99] |
CE/QRE: Ag | |||||||
Pb+2 and Hg+2 | SWASV | Electrode system | WE: carbon | Paper | 2.0 and 2.3 ppb, resp. water | Soda water and dirty ground | [111] |
CE: carbon | |||||||
RE: Ag pseudo | |||||||
As | CV | Electrode system | WE: Ag | Plastic | 1 ppb | No | [102] |
CE: Carbon | |||||||
RE: Ag/AgCl | |||||||
As | SWASV | Electrode system | WE: Au/SWCNT | PDMS | 4.5 ppb | No | [103] |
CE and RE: SWCNT | |||||||
As(III) | Amperometry | Bioreporter with electrode system | WE: Au | Plastic | 0.8 ppb | Tap and ground water | [112] |
CE and RE: Ag and E. coli | |||||||
Nitrate | CV | Electrode system | WE and RE: Ag | Glass | 25 ppb | [113] | |
CE: Au | |||||||
Nitrate | CV | Electrode system | WE: Ag | Glass | 0.2 ppm | Field and environmental water | [114] |
CE: Au | |||||||
RE: Ag | |||||||
Nitrate and Potassium | Potentiometric | Electrode system | WE: Polymeric membrane | Green tapes | 9.56 and 0.81 mg/L, respectively | Water from recycling unit | [115] |
RE: Ag/AgCl | |||||||
Nitrate | Potentiometric | Electrode system with modified working electrode | WE: f-MWCNTs RE:Ag/AgCl | Lipophilic carbon nanotubes | −7 M | Desalinated seawater | [116] |
Nitrate | EIS | Electrode system with modified working electrode | WE: NiR/nTiO2-GF CE: Au RE: Ag/AgCl | PDMS | 1 M | No | [117] |
Nitrate and Nitrite | SWV | Electrode system with modified working electrode | WE: Cu/MWCNT/RGO/GCE CE: Pt-wire RE: Ag/AgCl | GCE | 20 and 30 nM, resp. | Tap and mineral water | [77] |
E. coli | Voltammetry | Electrode system with modified working electrode | WE: immobilized DNA probe on Au CE and RE: Pt | Glass | 100 nM | No | [118] |
Hepatitis B | ASV | Electrode system | WE: GCE CE: Pt wire RE: Ag/AgCl and DNA modified AgNP | Paper | 85 pM | No | [119] |
E. coli | Amperometry | Immunoassays | Antibody | PMMA | 50 CFU/mL | Real sample | [120] |
E.coli | Positive dielectrophoresis | Sensing and focusing electrode | Not specified | PDMS | 300 CFU/mL | No | [121] |
E. coli | EIS | Interdigitated electrodes | Modified silicon sensor chip | Silicon and PDMS | 10 cells/mL | No | [122] |
E. coli and S. aureus | EIS | Coplanar electrode | Au electrode | Silicon | 522 cells/mL | No | [123] |
E. coli and Enterococci | Coulter principle | Microfluidic sensing chip | Resistance detection circuit | PDMS | Individual cell | Ballast water sample | [124] |
Salmonella typhimurium | Impedance analyzer | Interdigitated electrodes | Au electrode with immobilized antibodies | PDMS | 3 CFU/mL | No | [125] |
Target Analyte | Measurement Principle | Measuring Range | Features | Company | Ref. |
---|---|---|---|---|---|
Arsenic | Paper-based electrochemistry test strips | Not specified | Easy-to-use, quantitative, fast, low cost, nontoxic, disposable | Bio Nano Consulting | [126] |
Copper, lead, and cadmium | Stripping square wave voltammetry with carbon–carbon–silver electrodes | Not specified | Easy-to-use, quantitative, simple, easy to use, cost-effective | PalmSense | [127] |
Heavy metals | Potentiometric cell with carbon–bismuth electrodes | Not specified | Simultaneous analysis, portable systems, in situ results, low cost | GTQ (Chemical transducers research Group) | [128] |
Nitrate | Potentiometric cell with liquid membrane ion selective electrodes | 0.6 to 200.0 ppm | Detection of nitrate–nitrogen in freshwater samples | MEDIRAY | [129] |
Nitrate | Potentiometric cell with ion-selective electrodes | 0.5 to 450.0 mg/L | Simple to use, callibration-free operation | Xylem | [130] |
Nitrate | Potentiometric cell with ion-selective electrodes | 1 to 14,000 mg/L | Easy to use, portable | Vernier | [131] |
Nitrate | Potentiometric cell with ion-selective electrodes | 0.62 to 6200 ppm | Replaceable sensing modules, durable polyetherimide (PEI) body, BNC(Bayonet Neill–Concelman) connection | HANNA instruments | [132] |
Optical Methods | |||||||
---|---|---|---|---|---|---|---|
Target Analyte | Detection Principle | Sensing Element | Sensing Material | Substrate | LOD | Real Sample | Ref. |
Cu(II) Ni(II) Cd(II) Cr(VI) | Colorimetric | Chemical compound | Sodium diethyldithiocarbamate Dimethylglyoxime Cadion Diphenylcarbazide | Paper | 0.29 ppm 0.33 ppm 0.19 ppm 0.35 ppm | Distilled water Reservoir water Beach water | [138] |
Hg2+ | Colorimetric | Nanoparticles | Platinum nanoparticles and 3,3,5,5-tetramethylbenzidine | Paper | 0.01 uM | Pond and tap water | [139] |
Pb2+ | Colorimetric | Functionalized nanoparticles | AuNP functionalized with 11-mercaptoundecanoic acid | PDMS | 10 M | No | [140] |
As(III) | Colorimetric | Functionalized nanoparticles | AuNP functionalized with -lipoic acid and thioguanine | Paper | 1.0 ppb | No | [141] |
As | Colorimetric | Functionalized nanoparticles | AuNP functionalized with -lipoic acid | Paper | Quality analysis | Bangladesh groundwater | [142] |
As(III) | Colorimetric | Hach®EZ Arsenic Test Kit | Standard Gutzeit reaction reagents | Plastic | 3 g/L | No | [143] |
Cu2+ and Hg2+ | Fluorescence | Quantum dots | CdTe quantum dots | Paper | 0.035 g/L 0.056 g/L | Lake and sea water | [144] |
As(III) | Fluorescence | Bioreporter cell | E. coli | PDMS | 10 g/L | Tap water | [145] |
As(III) | Fluorescence | Bioreporter cell | E. coli | PDMS | 50 g/L | No | [146] |
As(III) | SERS | Functionalized nanoparticles | AgNP functionalized with glutathione/4-mercaptopyridine | PDMS | 0.67 ppb | Tap water Mineral water | [147] |
As(IV) | CL | Chemical compound | Luminol and Vanadomolybdoarsenate heteropoly acid | PDMS | −8 M | Tap water | [148] |
Nitrate | Colorimetric | Chromogenic agent | Chromotropic acid and Sulphuric acid | PDMS | 0.70 mg/L | Drinking water, freshwater, wastewater, and sea water | [149] |
Nitrate | Colorimetric | Chromogenic agent | Griess reagent | Fiber | 7 g/L | Lake water Tap water | [150] |
Nitrate | Colorimetric | Chromogenic agent | Griess reagent | PMMA | 0.0782 ppm | Tap water Bottled drinking water Home-filtered water | [151] |
Nitrite and Nitrate | Colorimetric | Chromogenic agent | Griess reagent Zinc microparticles | Paper | 1.0 M 19 M | Tap water and synthetic water | [152] |
Nitrite and Nitrate | Colorimetric | Chromogenic agent | Griess reagent Imidazole buffer | PMMA | 0.02 M 0.025 M | River water | [153] |
Nitrite and Nitrate | Colorimetric | Chromogenic agent | Griess reagent Copper-activated cadmium column | PMMA | 20 nM | Sea water | [154] |
E. coli | PCR | Biological elements | Polyclonal antibodies | PMMA | 6 CFU | Recreational lake water, waste water | [155] |
E. coli | Fluorescence | Biological elements | Magnetic beads conjugated with antibodies | PDMS | ?? | Drinking water | [156] |
E. coli | Fluorescence | Biological elements | Streptavidin-coated magnetic markers | PDMS | ?? | [157] | |
E. coli | Light scattering | Biological elements | Antibody-conjugated beads | Paper | 10 CFU/mL | Field water | [158] |
E. coli S. aureus | SPR | Biological elements | Au surface modified with MUA, EDC/NHS, Protein G and anti-LPS antibody | PMMA | ?? | No | [159] |
Roravirus | Fluorescence | Graphene oxide | Glass | 105 PFU/mL | No | [160] | |
Antimicrobial- resistant bacteria | Colorimetric | Chromogenic agent | Nitrocefin | Paper | 10 mU/mL | Sewage water, river water | [161] |
Target Analyte | Measurement Principle | Measuring Range | Features | Company | Ref. |
---|---|---|---|---|---|
Arsenic | Kit-based colorimetric | 0 to 500 ppb | Easy-to-use, effective way | Hach | [162] |
Arsenic | Kit-based colorimetric | 0 to 500 ppb | Result in 12 min, 100 tests per kit | FilterWater.com | [163] |
Arsenic | Kit-based digital colorimetric | 2 to 100 ppb | Reaction time 20 mins | Palintest Water analysis technology | [164] |
Arsenic | Atomic fluorescence spectrometry | 10 ppt | Easy-to-learn and easy-to-use system, can be automated | P S Analytical | [165] |
Lead, thallium, mercury, cadmium iron, nickel, and zinc | Color-based visual detection | Not specified | Simple to use, results in 15 to 60 s, low-cost analysis | ChemSee | [166] |
Nitrate | Portable photometer | 0.0 to 30.0 ppm | Easy to use, not suitable for seawater | HANNA instruments | [167] |
Nitrate | UV absorbance with | 0 to 50 mg/L | Modern communication systems allow data to be accessed in real-time | HydroMetrics | [168] |
Nitrate | UV absorbance with | 0.05 to 200 mg/L | Access with web browser, optional anti-fouling wiper, flexible sensor options | OTT ecoN | [169] |
C. jejuni, C. coli, C. upsaliensis, and C. lari | PCR-campylobacter detection kit | Not specified | Specific, rapid, and reliable detection; amplification limit of one copy per reaction; ready-to-use kit | BioVision | [170] |
Method | Advantages | Disadvantages |
---|---|---|
Electrochemical | High selectivity High selectivity Miniaturized electrodes makes the system portable Possibility of mass production | Tedious fabrication process of electrode |
Colorimetric | Simple analysis Provides qualitative results Quick response | Provides relative output |
CL | High sensitivity Does not require external light source Portable | Limited number of CL reagents available |
Fluorescence | High sensitivity High selsectivity Portable | Limited to analytes that possess inherent fluorescence External light source necessary |
SPR | High sensitivity High selsectivity Label-free detection | Portability may be an issue |
SERS | High sensitivity High selsectivity | Highly sensitive to environmental changes |
Optical diffraction | High sensitivity High selsectivity ortable | Occasionally, signal enhancement by sequential amplification is necessary |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaywant, S.A.; Arif, K.M. A Comprehensive Review of Microfluidic Water Quality Monitoring Sensors. Sensors 2019, 19, 4781. https://doi.org/10.3390/s19214781
Jaywant SA, Arif KM. A Comprehensive Review of Microfluidic Water Quality Monitoring Sensors. Sensors. 2019; 19(21):4781. https://doi.org/10.3390/s19214781
Chicago/Turabian StyleJaywant, Swapna A., and Khalid Mahmood Arif. 2019. "A Comprehensive Review of Microfluidic Water Quality Monitoring Sensors" Sensors 19, no. 21: 4781. https://doi.org/10.3390/s19214781
APA StyleJaywant, S. A., & Arif, K. M. (2019). A Comprehensive Review of Microfluidic Water Quality Monitoring Sensors. Sensors, 19(21), 4781. https://doi.org/10.3390/s19214781