# Testing of a MEMS Dynamic Inclinometer Using the Stewart Platform

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Stewart Platform

#### 2.1. Kinematic Analysis

#### 2.2. Spatial Orbits

## 3. Testing Using Spatial Orbits

#### 3.1. Gyroscope and Accelerometer

#### 3.2. Tilt Sensing

## 4. Experimental Investigation

#### 4.1. Tracking Performance

#### 4.2. Cross Coupling

#### 4.3. Comparison with the Rotator

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Shaeffer, D.K. MEMS inertial sensors: A tutorial overview. IEEE Commun. Mag.
**2013**, 51, 100–109. [Google Scholar] [CrossRef] - Bedon, C.; Bergamo, E.; Izzi, M.; Noè, S. Prototyping and validation of MEMS accelerometers for structural health monitoring-the case study of the Pietratagliata cable-stayed bridge. J. Sens. Actuator Netw.
**2018**, 7, 30. [Google Scholar] [CrossRef] - Ha, D.; Park, H.; Choi, S.; Kim, Y. A wireless MEMS-based inclinometer sensor node for structural health monitoring. Sensors
**2013**, 13, 16090–16104. [Google Scholar] [CrossRef] [PubMed] - Ha, D.W.; Kim, J.M.; Kim, Y.; Park, H.S. Development and application of a wireless MEMS-based borehole inclinometer for automated measurement of ground movement. Automat. Constr.
**2018**, 87, 49–59. [Google Scholar] [CrossRef] - Member, S.N.; Touya, Y.; Nonmembers, S.T. Automatic on-line measurement of ship’s attitude by use of servo-type inclinometers. Electr. Commun. Jpn.
**2010**, 78, 91–102. [Google Scholar] [CrossRef] - Akella, M.R.; Halbert, J.T.; Kotamraju, G.R. Rigid body attitude control with inclinometer and low-cost gyro measurements. Syst. Control Lett.
**2003**, 49, 151–159. [Google Scholar] [CrossRef] - Gui, P.; Tang, L.; Mukhopadhyay, S. MEMS based IMU for tilting measurement: Comparison of complementary and kalman filter based data fusion. In Proceedings of the 2015 IEEE 10th conference on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–17 June 2015. [Google Scholar]
- Ligorio, G.; Sabatini, A.M. A Novel Kalman filter for human motion tracking with an inertial-based dynamic inclinometer. IEEE Trans. Biomed. Eng.
**2015**, 62, 2033–2043. [Google Scholar] [CrossRef] [PubMed] - Syed, Z.F.; Aggarwal, P.; Goodall, C.; Niu, X.; El-Sheimy, N. A new multi-position calibration method for MEMS inertial navigation systems. Meas. Sci. Technol.
**2007**, 18, 1897–1907. [Google Scholar] [CrossRef] - Aggarwal, P.; Syed, Z.; Niu, X.; El-Sheimy, N. A standard testing and calibration procedure for low cost MEMS inertial sensors and units. J. Navig.
**2008**, 61, 323–336. [Google Scholar] [CrossRef] - Ren, Y.; Wang, Y.; Wang, M.; Wu, S.; Wei, B. A measuring system for well logging attitude and a method of sensor calibration. Sensors
**2014**, 14, 9256–9270. [Google Scholar] [CrossRef] [PubMed] - Cheuk, C.M.; Lau, T.K.; Lin, K.W.; Liu, Y. Automatic calibration for inertial measurement unit. In Proceedings of the 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), Guangzhou, China, 5–7 December 2012. [Google Scholar]
- Ren, C.; Liu, Q.; Fu, T. A novel self-calibration method for MIMU. IEEE Sens. J.
**2015**, 15, 5416–5422. [Google Scholar] [CrossRef] - Fang, B.; Chou, W.; Ding, L. An optimal calibration method for a MEMS inertial measurement unit. Int. J. Adv. Robot Syst.
**2014**, 11, 1–14. [Google Scholar] [CrossRef] - Gallardo-Alvarado, J. An overview of parallel manipulators. In Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory; Springer International Publishing: Switzerland, 2016. [Google Scholar]
- Liu, K.; Fitzgerald, J.M.; Lewis, F.L. Kinematic analysis of a Stewart platform manipulator. IEEE Trans. Ind. Electron.
**1993**, 40, 282–293. [Google Scholar] [CrossRef] - Furqan, M.; Suhaib, M.; Ahmad, N. Studies on Stewart platform manipulator: A review. J. Mech. Sci. Technol.
**2017**, 31, 4459–4470. [Google Scholar] [CrossRef] - Cardona, M. Kinematics and Jacobian analysis of a 6UPS Stewart-Gough platform. In Proceedings of the 2016 IEEE 36th Central American and Panama Convention (CONCAPAN XXXVI), San Jose, Costa Rica, 9–11 November 2016. [Google Scholar]
- Zhang, Y.; Yu, Y. Optimal design of 6DOF parallel robot based on output frequency response function. In Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, 11–12 April 2009. [Google Scholar]
- Jiang, H.Z.; He, J.F.; Tong, Z.Z. Characteristics analysis of joint space inverse mass matrix for the optimal design of a 6-DOF parallel manipulator. Mech. Mach. Theory
**2010**, 45, 722–739. [Google Scholar] [CrossRef] - Wu, J.F.; Zhang, R.; Wang, R.H.; Yao, Y.X. A system optimization approach for the calibration of parallel kinematics machine tools by a laser tracker. Int. J. Mach. Tools Manuf.
**2014**, 86, 1–11. [Google Scholar] [CrossRef] - Ji, P.; Wu, H. A closed-form forward kinematics solution for the 6-6/sup p/Stewart platform. IEEE T. Robotic. Autom.
**2002**, 17, 522–526. [Google Scholar] - Pedley, M. Tilt sensing using a three-axis accelerometer. Freescale Semicond. Appl. Notes
**2013**, 3, 1–21. [Google Scholar] - Liu, Z.; Cai, C.; Yu, M.; Yang, M. Applying spatial orbit motion to accelerometer sensitivity measurement. IEEE Sens. J.
**2017**, 17, 4483–4491. [Google Scholar] [CrossRef]

**Figure 7.**Conical motion around the Z-axis generated by the Stewart platform. (

**a**) Amplitudes of position; (

**b**) amplitudes of orientation where the legend Q(i) (i = 2, 3, 4) stands for the ith element of the quaternion for the orientation expression.

**Figure 10.**Positional orbit generated by the Stewart platform. (

**a**) Amplitudes of position; (

**b**) amplitudes of orientation in terms of Euler angles.

**Figure 14.**Amplitude frequency deviation between the Stewart platform and rotator. (

**a**) Gyroscope; (

**b**) tilt sensing.

Dynamic Accuracy | 0.1° | Tilt Range | Pitch ± 90°, Roll ± 180° |
---|---|---|---|

Static accuracy | 0.01° | Start delay | <50 ms |

Resolution | 0.01° | Maximum output frequency | 100 Hz |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, Z.; Cai, C.; Yang, M.; Zhang, Y. Testing of a MEMS Dynamic Inclinometer Using the Stewart Platform. *Sensors* **2019**, *19*, 4233.
https://doi.org/10.3390/s19194233

**AMA Style**

Liu Z, Cai C, Yang M, Zhang Y. Testing of a MEMS Dynamic Inclinometer Using the Stewart Platform. *Sensors*. 2019; 19(19):4233.
https://doi.org/10.3390/s19194233

**Chicago/Turabian Style**

Liu, Zhihua, Chenguang Cai, Ming Yang, and Ying Zhang. 2019. "Testing of a MEMS Dynamic Inclinometer Using the Stewart Platform" *Sensors* 19, no. 19: 4233.
https://doi.org/10.3390/s19194233