Dimensionality Reduction and Subspace Clustering in Mixed Reality for Condition Monitoring of High-Dimensional Production Data †
Abstract
Share and Cite
Hoppenstedt, B.; Reichert, M.; Kammerer, K.; Probst, T.; Schlee, W.; Spiliopoulou, M.; Pryss, R. Dimensionality Reduction and Subspace Clustering in Mixed Reality for Condition Monitoring of High-Dimensional Production Data. Sensors 2019, 19, 3903. https://doi.org/10.3390/s19183903
Hoppenstedt B, Reichert M, Kammerer K, Probst T, Schlee W, Spiliopoulou M, Pryss R. Dimensionality Reduction and Subspace Clustering in Mixed Reality for Condition Monitoring of High-Dimensional Production Data. Sensors. 2019; 19(18):3903. https://doi.org/10.3390/s19183903
Chicago/Turabian StyleHoppenstedt, Burkhard, Manfred Reichert, Klaus Kammerer, Thomas Probst, Winfried Schlee, Myra Spiliopoulou, and Rüdiger Pryss. 2019. "Dimensionality Reduction and Subspace Clustering in Mixed Reality for Condition Monitoring of High-Dimensional Production Data" Sensors 19, no. 18: 3903. https://doi.org/10.3390/s19183903
APA StyleHoppenstedt, B., Reichert, M., Kammerer, K., Probst, T., Schlee, W., Spiliopoulou, M., & Pryss, R. (2019). Dimensionality Reduction and Subspace Clustering in Mixed Reality for Condition Monitoring of High-Dimensional Production Data. Sensors, 19(18), 3903. https://doi.org/10.3390/s19183903

