Snow Albedo Seasonality and Trend from MODIS Sensor and Ground Data at Johnsons Glacier, Livingston Island, Maritime Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In-Situ Data
2.3. Satellite Data
2.4. Data Processing
2.4.1. Cloud Mask
2.4.2. Albedo Filtering
2.4.3. Albedo Seasonality
2.4.4. Albedo Trend
3. Results and Discussion
3.1. Cloud Mask Performance
3.2. In-Situ Diurnal Albedo
3.3. Albedo Seasonality
- The scattering of the data was greater in September and April, and was minimal in summer months; probably due to a SZA effect.
- From September 1 to April 10, albedo followed a generally decreasing trend.
- Regarding MOD10A1 data, we observed that:
- MOD10A1 exhibited greater variability than in-situ data; a result similar to that obtained in Greenland [28], where it was found that MOD10A1 tracks the seasonal variability in the albedo but presents a greater variability than that observed in the terrestrial stations: Compared to a standard deviation of 0.033, 0.012, 0.012, 0.112, and 0.069, for the 16-day averaged albedo of the five AWS, the 16-day averaged MOD10A1 presented standard deviation values of 0.066, 0.042, 0.023, 0.097, and 0.083, respectively. This behavior agrees with that which we have obtained at JG.
- Some extremely low values were obtained.
- The maximum values (triangles in Figure 6b) followed the same trend as the in-situ data from September 1 to April 10. The triangles in Figure 6b represent the MOD10A1 maximum albedo every three consecutive values; that is to say, the snow albedo at tn (α(tn)) is represented by a triangle if it is bigger than α(tn-1) and α(tn+1). Triangles are joined by a solid black line, which provides a guide for the eye of the evolution of MOD10A1 maxima.
3.4. Albedo Trend
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Jakobs, C.L.; Reijmer, C.H.; Kuipers, M.P.; König-Langlo, G.; van den Broeke, M.R. Quantifying the snowmelt-albedo feedback at Neumayer Station, East Antarctica. The Cryosphere 2018, 13, 1473–1485. [Google Scholar] [CrossRef]
- Cordero, R.R.; Damiani, A.; Ferrer, J.; Jorquera, J.; Tobar, M.; Labbe, F.; Carrasco, J.; Laroze, D. UV irradiance and albedo at Union Glacier Camp (Antarctica): A case study. PLoS ONE 2014, 9, e90705. [Google Scholar] [CrossRef] [PubMed]
- Comiso, J.C. Satellite-observed variability and trend in sea-ice extent, surface temperature, albedo and clouds in the Arctic. Ann. Glaciol. 2001, 33, 457–473. [Google Scholar] [CrossRef]
- Seo, M.; Kim, H.C.; Huh, M.; Yeom, J.M.; Lee, C.S.; Lee, K.S.; Choi, S.; Han, K.S. Long-term variability of surface albedo and its correlation with climatic variables over Antarctica. Remote Sens. 2016, 8, 981. [Google Scholar] [CrossRef]
- Moritz, R.E.; Bitz, C.M.; Steig, E.J. Dynamics of Recent Climate Change in the Arctic. Science 2002, 297, 1497–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laine, V. Antarctic ice sheet and sea ice regional albedo and temperature change, 1981–2000, from AVHRR Polar Pathfinder data. Remote Sens. Environ. 2008, 112, 646–667. [Google Scholar] [CrossRef]
- van Wessem, J.M.; Ligtenberg, S.R.M.; Reijmer, C.H.; van de Berg, W.J.; van den Broeke, M.R.; Barrand, N.E.; Thomas, E.R.; Turner, J.; Wuite, J.; Scambos, T.A.; et al. The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution. The Cryosphere 2016, 10, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Sancho, L.G.; Pintado, A.; Navarro, F.; Ramos, M.; De Pablo, M.A.; Blanquer, J.M.; Raggio, J.; Valladares, F.; Green, T.G.A. Recent warming and cooling in the Antarctic Peninsula region has rapid and large effects on lichen vegetation. Sci. Rep. 2017, 7, 5689. [Google Scholar] [CrossRef]
- de Pablo, M.A.; Ramos, M.; Molina, A. Snow cover evolution, on 2009-2014, at the Limnopolar Lake CALM-S site on Byers Peninsula, Livingston Island, Antarctica. Catena 2017, 149, 538–547. [Google Scholar] [CrossRef]
- Zhang, T.J.; Frauenfeld, O.W.; Serreze, M.C.; Etringer, A.; Oelke, C.; McCreight, J.; Barry, R.G.; Gilichinsky, D.; Yang, D.Q.; Ye, H.C.; et al. Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J. Geophys. Res. 2005, 110, D16101. [Google Scholar] [CrossRef]
- Brown, J.; Hinkel, K.M.; Nelson, F.E. The circumpolar active layer monitoring (CALM) program: research designs and initial results. Polar Geogr. 2000, 24, 166–258. [Google Scholar] [CrossRef]
- Matsuoka, N. Monitoring periglacial processes: Towards construction of a global network. Geomorphology 2006, 80, 20–31. [Google Scholar] [CrossRef]
- Vieira, G.; Bockheim, J.; Guglielmin, M.; Balks, M.; Abramov, A.A.; Boelhouwers, J.; Cannone, N.; Ganzert, L.; Gilichinsky, D.A.; Goryachkin, S.; et al. Thermal state of permafrost and active-layer monitoring in the Antarctic: advances during the international polar year 2007-2009. Permafr. Periglac. Process. 2010, 21, 182–197. [Google Scholar] [CrossRef]
- Barrand, N.E.; Vaughan, D.; Steiner, N.; Tedesco, M.; Kuipers, M.P.; van den Broeke, M.R.; Hosking, J.S. Trends in Antarctic peninsula surface melting conditions from observations and regional climate modeling. J. Geophys. Res. Earth Surf. 2013, 118, 315–330. [Google Scholar] [CrossRef]
- Jonsell, U.Y.; Navarro, F.J.; Bañón, M.; Lapazaran, J.J.; Otero, J. Sensitivity of a distributed temperature-radiation index melt model based on AWS observations and surface energy balance fluxes, Hurd Peninsula glaciers, Livingston Island, Antarctica. The Cryosphere 2012, 6, 539–552. [Google Scholar] [CrossRef] [Green Version]
- Navarro, F.J.; Jonsell, U.Y.; Corcuera, M.I.; Martín-Español, A. Decelerated mass loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula. J. Glaciol. 2013, 59, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Csiszar, I.; Gutman, G. Mapping global land surface albedo from NOAA AVHRR. J. Geophys. Res. Atmos. 1999, 104, 6215–6228. [Google Scholar] [CrossRef]
- Klein, A.G.; Stroeve, J. Development and validation of a snow albedo algorithm for the MODIS instrument. Ann. Glaciol. 2002, 34, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Tekeli, A.E.; Şensoy, A.; Şorman, A.; Akyürek, Z.; Şorman, Ü. Accuracy assessment of MODIS daily snow albedo retrievals with in situ measurements in Karasu basin, Turkey. Hydrol. Process. 2006, 20, 705–721. [Google Scholar] [CrossRef]
- Stroeve, J.; Box, J.E.; Gao, F.; Liang, S.; Nolin, A.; Schaaf, C. Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements. Remote Sens. Environ. 2005, 94, 46–60. [Google Scholar] [CrossRef]
- Wang, D.; Liang, S.; He, T.; Yu, Y.; Schaaf, C.; Wang, Z. Estimating daily mean land surface albedo from MODIS data. J. Geophys. Res. Atmos. 2015, 120, 4825–4841. [Google Scholar] [CrossRef]
- Song, R.; Muller, J.P.; Kharbouche, S.; Woodgate, W. Intercomparison of surface albedo retrievals from MISR, MODIS, CGLS using tower and upscaled tower measurements. Remote Sens. 2019, 11, 644. [Google Scholar] [CrossRef]
- Warren, S.G. Optical properties of snow. Rev. Geophys. 1982, 20, 67–89. [Google Scholar] [CrossRef]
- Pirazzini, R. Surface albedo measurements over Antarctic sites in summer. J. Geophys. Res. Atmos. 2004, 109, D20118. [Google Scholar] [CrossRef]
- NASA MODIS and VIIRS Snow and Ice Global Mapping Project. Available online: https://modis.gsfc.nasa.gov/?c=userguides (accessed on 25 June 2019).
- NASA MCD43a4. Available online: https://lpdaac.usgs.gov/products/mcd43a3v006/ (accessed on 25 June 2019).
- Stroeve, J.C.; Box, J.E.; Haran, T. Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet. Remote Sens. Environ. 2006, 105, 155–171. [Google Scholar] [CrossRef]
- Malik, M.J.; van der Velde, R.; Vekerdy, Z.; Su, Z. Assimilation of Satellite-Observed Snow Albedo in a Land Surface Model. J. Hydrometeorol. 2012, 13, 1119–1130. [Google Scholar] [CrossRef]
- Moustafa, S.E.; Rennermalm, A.K.; Smith, L.C.; Miller, M.A.; Mioduszewski, J.R.; Koenig, L.S.; Hom, M.G.; Shuman, C.A. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet. The Cryosphere 2015, 9, 905–923. [Google Scholar] [CrossRef] [Green Version]
- Bañón, M.; Justel, A.; Velázquez, D.; Quesada, A. Regional weather survey on Byers Peninsula, Livingston Island, South Shetland Islands, Antarctica. Antarct. Sci. 2013, 25, 146–156. [Google Scholar] [CrossRef]
- Calleja, J.F.; Recondo, C.; Peón, J.; Fernández, S.; de la Cruz, F.; González-Piqueras, J. A New Method for the Estimation of Broadband Apparent Albedo Using Hyperspectral Airborne Hemispherical Directional Reflectance Factor Values. Remote Sens. 2016, 8, 183. [Google Scholar] [CrossRef]
- Wang, X.W.; Zender, C.S. Arctic and Antarctic diurnal and seasonal variations of snow albedo from multiyear baseline surface radiation network measurements. J. Geophys. Res. Earth Surf. 2011, 116, F03008. [Google Scholar] [CrossRef]
- Wang, Z.S.; Schaaf, C.B.; Sun, Q.S.; Shuai, Y.; Román, M.O. Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sens. Environ. 2018, 207, 50–64. [Google Scholar] [CrossRef]
- Jiao, Z.; Ding, A.; Kokhanovsky, A.; Schaaf, C.; Bréon, F.M.; Dong, Y.; Wang, Z.; Liu, Y.; Zhang, X.; Yin, S.; et al. Development of a snow kernel to better model the anisotropic reflectance of pure snow in a kernel-driven BRDF model framework. Remote Sens. Environ. 2019, 221, 198–209. [Google Scholar] [CrossRef]
- Ding, A.; Jiao, Z.; Dong, Y.; Zhang, X.; Peltoniemi, J.I.; Mei, L.; Guo, J.; Yin, S.; Cui, L.; Chang, Y.; et al. Evaluation of the Snow Albedo Retrieved from the Snow Kernel Improved the Ross-Roujean BRDF Model. Remote Sens. 2019, 11, 1611. [Google Scholar] [CrossRef]
- Casey, K.A.; Polashenski, C.M.; Chen, J.; Tedesco, M. Impact of MODIS sensor calibration updates on Greenland Ice Sheet surface reflectance and albedo trends. The Cryosphere 2017, 11, 1781–1795. [Google Scholar] [CrossRef] [Green Version]
- Bormann, K.J.; McCabe, M.F.; Evans, J.P. Satellite based observations for seasonal snow cover detection and characterisation in Australia. Remote Sens. Environ. 2012, 123, 57–71. [Google Scholar] [CrossRef]
- Sirguey, P.; Mathieu, R.; Arnaud, Y. Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment. Remote Sens. Environ. 2009, 113, 160–181. [Google Scholar] [CrossRef]
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 2013, 51, 367–380. [Google Scholar] [CrossRef]
- Thompson, J.A.; Paull, D.J.; Lees, B.G. An Improved Liberal Cloud-Mask for Addressing Snow/Cloud Confusion with MODIS. Photogramm. Eng. Remote Sens. 2015, 81, 119–129. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Chavez, P.S. An Improved Dark-Object Subtraction Technique for Atmospheric Scattering Correction of Multispectral Data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Jawak, S.D.; Udhayaraj, A.; Luis, A.J. Geospatial mapping of vegetation in the Antarctic environment using very high-resolution WorldView-2 imagery. In Proceedings of the Volume 9877, Land Surface and Cryosphere Remote Sensing III. SPIE Asia-Pacific Remote Sensing, New Delhi, India, 4–7 April 2016. [Google Scholar]
- Barcaza, G.; Aniya, M.; Matsumoto, T.; Aoki, T. Satellite-derived equilibrium lines in northern Patagonia icefield, Chile, and their implications to glacier variations. Arct. Antarct. Alp. Res. 2009, 41, 174–182. [Google Scholar] [CrossRef]
- Dozier, J. Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V. Development of Methods for Mapping Global Snow Cover Using Moderate Resolution Imaging Spectroradiometer Data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- USGS Landsat Missions Product Information. Available online: usgs.gov/land-resources/nli/landsat/product-information (accessed on 25 June 2019).
- Park, S.-H.; Lee, M.-J.; Jung, H.-S. Spatiotemporal analysis of snow cover variations at Mt. Kilimanjaro using multi-temporal Landsat images during 27 years. J. Atmos. Sol. Terr. Phys. 2016, 143, 37–46. [Google Scholar] [CrossRef]
- Vogel, S.W. Usage of high-resolution Landsat 7 band 8 for single-band snow-cover classification. Ann. Glaciol. 2002, 34, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Landsat 8 Data Users Handbook. Available online: https://www.usgs.gov/media/files/landsat-8-data-users-handbook (accessed on 9 May 2019).
- Calleja, J.F.; Fernández, S.; Aristorza-Agulla, I.; González, S.; De Pablo, M.Á. Distributed snow albedo measurements on Livingston Island, Antarctica. In Proceedings of the IX Simposio de Estudios Polares, Madrid, Spain, 5–7 September 2018. [Google Scholar]
- Verseghy, D.L. Class—A Canadian land surface scheme for GCMS. I. Soil model. Int. J. Climatol. 1991, 11, 111–133. [Google Scholar] [CrossRef]
- Bohren, C.F.; Barkstrom, B.R. Theory of the optical properties of snow. J. Geophys. Res. 1974, 79, 4527–4535. [Google Scholar] [CrossRef]
- Aguado, E. Radiation balances of melting snow covers at an open site in the central Sierra Nevada, California. Water Resour. Res. 1985, 21, 1649–1654. [Google Scholar] [CrossRef]
- Robinson, D.A.; Kukla, G. Albedo of a dissipating snow cover. J. Clim. Appl. Meteorol. 1984, 23, 1626–1634. [Google Scholar] [CrossRef]
- Dirmhirn, I.; Eaton, F.D. Some Characteristics of the Albedo of Snow. J. Appl. Meteorol. 1975, 14, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, C.; Winther, J.G. Intercomparison and validation of snow albedo parameterization schemes in climate models. Clim. Dyn. 2005, 25, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.J.; van der Velde, R.; Vekerdy, Z.; Su, Z. Improving modeled snow albedo estimates during the spring melt season. J. Geophys. Res. Atmos. 2014, 119, 7311–7331. [Google Scholar] [CrossRef] [Green Version]
- Helsen, M.M.; van de Wal, R.S.W.; Reerink, T.J.; Bintanja, R.; Madsen, M.S.; Yang, S.; Li, Q.; Zhang, Q. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth. The Cryosphere 2017, 11, 1949–1965. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, L.S.; Aðalgeirsdóttir, G.; Guðmundsson, S.; Langen, P.L.; Pálsson, F.; Mottram, R.; Gascoin, S.; Björnsson, H. The importance of accurate glacier albedo for estimates of surface mass balance on Vatnajökull: evaluating the surface energy budget in a regional climate model with automatic weather station observations. The Cryosphere 2017, 11, 1665–1684. [Google Scholar] [CrossRef]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Cleveland, W.S. LOWESS: A program for smoothing scatterplots by robust locally weighted regression. Am. Stat. 1981, 35, 54. [Google Scholar] [CrossRef]
- Stroeve, J.; Box, J.E.; Wang, Z.; Schaaf, C.; Barrett, A. Re-evaluation of MODIS MCD43 Greenland albedo accuracy and trends. Remote Sens. Environ. 2013, 138, 199–214. [Google Scholar] [CrossRef]
- Pope, E.L.; Willis, I.C.; Pope, A.; Miles, E.S.; Arnold, N.S.; Rees, W.G. Contrasting snow and ice albedos derived from MODIS, Landsat ETM + and airborne data from Langjökull, Iceland. Remote Sens. Environ. 2016, 175, 183–195. [Google Scholar] [CrossRef]
- Abram, N.J.; Mulvaney, R.; Wolff, E.W.; Triest, J.; Kipfstuhl, S.; Trusel, L.D.; Vimeux, F.; Fleet, L.; Arrowsmith, C. Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nat. Geosci. 2013, 6, 404–411. [Google Scholar] [CrossRef] [Green Version]
- | MOD10A1 (Cloud, Land, Snow) | MOD10A1 (Snow Albedo) | JCI (In-Situ Irradiance) | JG (In-Situ Albedo) | L7 | L8 |
---|---|---|---|---|---|---|
MOD10A1 (Cloud, Land, Snow) | 1546 | 286 | 464 | - | 22 | 62 |
MOD10A1 (Snow Albedo) | 286 | 286 | - | 159 | - | - |
JCI (In-Situ Irradiance) | 464 | - | 557 | - | - | - |
JG (In-Situ Albedo) | - | 159 | - | 1008 | - | - |
Season | MOD10A1 | In-Situ |
---|---|---|
2006–2007 | 9/1/2006–4/10/2007 | 12/1/2006–4/10/2007 |
2007–2008 | 9/1/2007–4/10/2008 | 9/1/2007–4/10/2008 |
2008–2009 | 9/1/2008–4/10/2009 | 9/1/2008–4/10/2009 |
2009–2010 | 9/1/2009–4/10/2010 | 12/1/2009–4/10/2010 |
2010–2011 | 9/1/2010–4/10/2011 | 1/1/2011–4/10/2008 |
2011–2012 | No Data | 12/14/2011–4/10/2012 |
2012–2013 | 1/1/2013–4/10/2014 | 2/14/2013–4/10/2013 |
2013–2014 | 2/1/2014–4/10/2014 | 2/1/2014–3/1/2014 |
2014–2015 | 11/1/2014–4/10/2015 | 12/22/2014–2/11/2015 |
Season | 2006–2007 | 2007–2008 | 2008–2009 | 2009–2010 | 2010–2011 |
Dates Range | 1/12/2006–6/03/2007 | 4/12/2007–22/2/2008 | 1/12/2008–12/2/2009 | 14/12/2009–7/03/2010 | 3/01/2011–24/02/2011 |
Season | 2011–2012 | 2012–2013 | 2013–2014 | 2014–2015 | - |
Dates Range | 4/12/2011–23/02/2012 | 26/12/2012–20/01/2013 | 3/02/2014–19/02/2014 | 2/12/2014–25/01/2015 | - |
In Situ clr | Cloud | Clear | Total | |
---|---|---|---|---|
MOD10A1 | ||||
Cloud | 313 | 53 | 366 | |
Clear | 73 | 25 | 98 | |
Total | 386 | 78 | 464 |
- | Landsat 7 NDSI Threshold | Landsat 8 NDSI Threshold | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
- | 0.4 | 0.7 | 0.4 | 0.7 | ||||||||
- | Cd | Cr | T | Cd | Cr | T | Cd | Cr | T | Cd | Cr | T |
MOD10A1 | ||||||||||||
Cd | 9 | 8 | 17 | 13 | 4 | 17 | 31 | 13 | 44 | 39 | 5 | 44 |
Cr | 1 | 4 | 5 | 4 | 1 | 5 | 7 | 11 | 18 | 11 | 7 | 18 |
T | 10 | 12 | 22 | 17 | 5 | 22 | 38 | 24 | 62 | 50 | 12 | 62 |
- | In-Situ Original | In-Situ Filtered | MOD10A1 Original | MOD10A1 Filtered |
---|---|---|---|---|
Maximum | 0.94 | 0.91 | 1.00 | 1.00 |
Minimum | 0.63 | 0.65 | 0.24 | 0.57 |
Mean | 0.79 | 0.79 | 0.75 | 0.86 |
Median | 0.79 | 0.78 | 0.76 | 0.85 |
σ | 0.06 | 0.05 | 0.15 | 0.11 |
Upper Whisker Maximum | 0.94 | 0.91 | 1.00 | 1.00 |
Lower Whisker Minimum | 0.63 | 0.65 | 0.37 | 0.57 |
Season | Decay Duration (days) Time Period | β (day−1) In-Situ MODIS | Intercept In-Situ MODIS |
---|---|---|---|
2006–2007 | 31 | 0.049 ± 0.009 | −1.88 ± 0.16 |
1/12/2007–2/12/2007 | 0.094 ± 0.019 | −1.2 ± 0.4 | |
2007–2008 | 85 | 0.026 ± 0.002 | −1.66 ± 0.11 |
10/24/2007–1/16/2008 | 0.026 ± 0.004 | −1.9 ± 0.2 | |
2008–2009 | 143 | 0.0159 ± 0.0012 | −1.43 ± 0.09 |
9/01/2008–1/21/2009 | 0.016 ± 0.005 | −1.4 ± 0.4 | |
2009–2010 | 98 | 0.011 ± 0.002 | −2.29 ± 0.15 |
12/08/2009–3/15/2010 | 0.002 1,* ± 0.007 | −2.2 ± 0.4 | |
2010–2011 | 124 | No Albedo Decay | No Albedo Decay |
9/08/2010–1/10/2011 | 0.014 ± 0.004 | −0.8 ± 0.3 | |
2011–2012 | - | No Albedo Decay | No Albedo Decay |
No Data | No Data | ||
2012–2013 | - | No Albedo Decay | No Albedo Decay |
No Albedo Decay | No Albedo Decay | ||
2013–2014 | 167 | No Albedo Decay | No Albedo Decay |
9/07/2013–1/30/2014 | 0.017 ± 0.002 | −1.29 ± 0.15 | |
2014–2015 | 48 | 0.041 ± 0.007 | −1.82 ± 0.19 |
12/26/2014–2/11/2015 | 0.033 ± 0.002 ** | −1.7 ± 0.8 *** |
Season | α(0) In-Situ/MODIS | αmin In-Situ/MODIS | RMSE In-Situ/MODIS |
---|---|---|---|
2006–2007 | 0.79/0.86 | 0.64/0.57 | 0.02/0.05 |
2007–2008 | 0.94/0.87 | 0.75/0.72 | 0.02/0.015 |
2008–2009 | 0.95/0.98 | 0.71/0.74 | 0.03/0.07 |
2009–2010 | 0.80/0.78 | 0.70/0.67 | 0.03/0.05 |
2010–2011 | -/1.0 | -/0.59 | -/0.08 |
2013–2014 | - /1.0 | -/0.74 | -/0.06 |
2014–2015 | 0.86/0.91 | 0.70/0.72 | 0.02/0.06 |
- | In-Situ | MOD10A1 | p-Value |
---|---|---|---|
Intercept | 0.76433 ± 00016 | 0.821 ± 0.003 | <2 × 10−16 |
Slope (day−1) | 0.00000606 ± 0.00000012 | 0.0000195 ± 0.0000017 | <2 × 10−16 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calleja, J.F.; Corbea-Pérez, A.; Fernández, S.; Recondo, C.; Peón, J.; de Pablo, M.Á. Snow Albedo Seasonality and Trend from MODIS Sensor and Ground Data at Johnsons Glacier, Livingston Island, Maritime Antarctica. Sensors 2019, 19, 3569. https://doi.org/10.3390/s19163569
Calleja JF, Corbea-Pérez A, Fernández S, Recondo C, Peón J, de Pablo MÁ. Snow Albedo Seasonality and Trend from MODIS Sensor and Ground Data at Johnsons Glacier, Livingston Island, Maritime Antarctica. Sensors. 2019; 19(16):3569. https://doi.org/10.3390/s19163569
Chicago/Turabian StyleCalleja, Javier F., Alejandro Corbea-Pérez, Susana Fernández, Carmen Recondo, Juanjo Peón, and Miguel Ángel de Pablo. 2019. "Snow Albedo Seasonality and Trend from MODIS Sensor and Ground Data at Johnsons Glacier, Livingston Island, Maritime Antarctica" Sensors 19, no. 16: 3569. https://doi.org/10.3390/s19163569
APA StyleCalleja, J. F., Corbea-Pérez, A., Fernández, S., Recondo, C., Peón, J., & de Pablo, M. Á. (2019). Snow Albedo Seasonality and Trend from MODIS Sensor and Ground Data at Johnsons Glacier, Livingston Island, Maritime Antarctica. Sensors, 19(16), 3569. https://doi.org/10.3390/s19163569