High Performance Mixed Potential Type NO2 Gas Sensor Based on Porous YSZ Layer Formed with Graphite Doping
Abstract
:1. Introduction
2. Experiment
2.1. Material
2.2. Fabrication of the Sensor
2.3. Measurement of the Sensor
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moos, R.; Reetmeyer, B.; Hürland, A.; Plog, C. Sensor for directly determining the exhaust gas recirculation rate—EGR sensor. Sens. Actuators B Chem. 2006, 119, 57–63. [Google Scholar] [CrossRef]
- Miura, N.; Nakatou, M.; Zhuiykov, S. Development of noxsensing devices based on ysz and oxide electrode aiming for monitoring car exhausts. Ceram. Int. 2004, 30, 1135–1139. [Google Scholar] [CrossRef]
- Sekhar, P.; Brosha, E.; Mukundan, R.; Li, W.; Nelson, M.; Palanisamy, P.; Garzon, F. Application of commercial automotive sensor manufacturing methods for NOx/NH3 mixed potential sensors for on-board emissions control. Sens. Actuators B Chem. 2010, 144, 112–119. [Google Scholar] [CrossRef]
- Cai, H.; Sun, R.; Yang, X.; Liang, X.; Wang, C.; Sun, P.; Liu, F.; Zhao, C.; Sun, Y.; Lu, G. Mixed-potential type NOx sensor using stabilized zirconia and MoO3–In2O3 nanocomposites. Ceram. Int. 2016, 42, 12503–12507. [Google Scholar] [CrossRef]
- Romanytsia, I.; Viricelle, J.P.; Vernoux, P.; Pijolat, C. Application of advanced morphology Au–X (X = YSZ, ZrO2 composites as sensing electrode for solid state mixed-potential exhaust NOx sensor. Sens. Actuators B Chem. 2015, 207, 391–397. [Google Scholar] [CrossRef]
- Wang, B.; Liu, F.; Yang, X.; Guan, Y.; Ma, C.; Hao, X.; Liang, X.; Liu, F.; Sun, P.; Zhang, T.; et al. Fabrication of Well-Ordered Three-Phase Boundary with Nanostructure Pore Array for Mixed Potential-Type Zirconia-Based NO2 Sensor. ACS Appl. Mater. Interfaces 2016, 8, 16752–16760. [Google Scholar] [CrossRef] [PubMed]
- Fleming, W. Physical principles governing nonideal behavior of thezirconia oxygen sensor. J. Electrochem. Soc. 1977, 124, 21–28. [Google Scholar] [CrossRef]
- Liu, Y.; Parisi, J.; Sun, X.; Lei, Y. Solid-state gas sensors for hightemperature applications a review. J. Mater. Chem. A 2014, 2, 9919–9943. [Google Scholar] [CrossRef]
- Moos, R.; Sahner, K.; Fleischer, M.; Guth, U.; Barsan, N.; Weimar, U. Solid State Gas Sensor Research in Germany—A Status Report. Sensors 2009, 9, 4323–4365. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Yuan, L.; Yu, J. A review of high-temperature electrochemical sensors based on stabilized zirconia. Solid State Ion. 2015, 283, 91–102. [Google Scholar] [CrossRef]
- Liang, X.; Wang, B.; Zhang, H.; Diao, Q.; Quan, B.; Lu, G. Progress in NASICON-based mixed-potential type gas sensors. Sens. Actuators B Chem. 2013, 187, 522–532. [Google Scholar] [CrossRef]
- Fergus, J. Materials for high temperature electrochemical NOx gas sensors. Sens. Actuators B Chem. 2007, 121, 652–663. [Google Scholar] [CrossRef]
- Zosel, J.; Tuchtenhagen, D.; Ahlborn, K.; Guth, U. Mixed potential gas sensor with short response time. Sens. Actuators B Chem. 2008, 130, 326–329. [Google Scholar] [CrossRef]
- Diao, Q.; Yin, C.; Liu, Y.; Li, J.; Gong, X.; Liang, X.; Yang, S.; Chen, H.; Lu, G. Mixed-potential-type NO2 sensor using stabilized zirconia and Cr2O3–WO3 nanocomposites. Sens. Actuators B Chem. 2012, 180, 90–95. [Google Scholar] [CrossRef]
- You, R.; Jing, G.; Yu, H.; Cui, T. Flexible Mixed-Potential-Type (MPT) NO₂ Sensor Based on An Ultra-Thin Ceramic Film. Sensors 2017, 17, 1740. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Guan, Y.; Sun, H.; Xu, X.; Sun, R.; Liang, X.; Sun, P.; Gao, Y.; Lu, G. YSZ-based NO2 sensor utilizing hierarchical In2O3 electrode. Sens. Actuators B Chem. 2016, 222, 698–706. [Google Scholar] [CrossRef]
- Liu, F.; Wang, B.; Yang, X.; Guan, Y.; Wang, Q.; Liang, X.; Sun, P.; Wang, Y.; Lu, G. High-temperature NO2 gas sensor based on stabilized zirconia and CoTa2O6 sensing electrode. Sens. Actuators B Chem. 2017, 240, 148–157. [Google Scholar] [CrossRef]
- You, R.; Hao, X.; Yu, H.; Wang, B.; Lu, G.; Liu, F.; Cui, T. High performance mixed-potential-type Zirconia-based NO2 sensor with self-organizing surface structures fabricated by low energy ion beam etching. Sens. Actuators B Chem. 2018, 263, 445–451. [Google Scholar] [CrossRef]
- Liang, X.; Yang, S.; Li, J.; Zhang, H.; Diao, Q.; Zhao, W.; Lu, G. Mixed-potential-type zirconia-based NO2 sensor with high-performance three-phase boundary. Sens. Actuators B Chem. 2011, 158, 1–8. [Google Scholar] [CrossRef]
- Sun, R.; Guan, Y.; Cheng, X.; Guan, Y.; Liang, X.; Ma, J.; Sun, P.; Sun, Y.; Lu, G. High performance three-phase boundary obtained by sand blasting technology for mixed-potential-type zirconia-based NO2 sensors. Sens. Actuators B Chem. 2015, 210, 91–95. [Google Scholar] [CrossRef]
- Guan, Y.; Li, C.; Cheng, X.; Wang, B.; Sun, R.; Liang, X.; Zhao, J.; Chen, H.; Lu, G. Highly sensitive mixed-potential-type NO2 sensor with YSZ processed using femtosecond laser direct writing technology. Sens. Actuators B Chem. 2014, 198, 110–113. [Google Scholar] [CrossRef]
- Park, J.; Yoon, B.Y.; Park, C.O.; Lee, W.J.; Lee, C.B. Sensing behavior and mechanism of mixed potential NOx sensors using NiO, NiO (YSZ) and CuO oxide electrodes. Sens. Actuators B Chem. 2009, 135, 516–523. [Google Scholar] [CrossRef]
- Liu, F.; Sun, R.; Guan, Y.; Cheng, X.; Zhang, H.; Guan, Y.; Liang, X.; Sun, P.; Lu, G. Mixed-potential type NH3 sensor based on stabilized zirconia and Ni3V2O8 sensing electrode. Sens. Actuators B Chem. 2015, 210, 795–802. [Google Scholar] [CrossRef]
- Liang, X.; Zhong, T.; Guan, H.; Liu, F.; Lu, G.; Quan, B. Ammonia sensor based on NASICON and Cr2O3 electrode. Sens. Actuators B Chem. 2009, 136, 479–483. [Google Scholar] [CrossRef]
- Liu, F.; Yang, X.; Wang, B.; Guan, Y.; Liang, X.; Sun, P.; Lu, G. High performance mixed potential type acetone sensor based on stabilized zirconia and NiNb2O6 sensing electrode. Sens. Actuators B Chem. 2016, 229, 200–208. [Google Scholar] [CrossRef]
- Mahendraprabhu, K.; Elumalai, P. Stabilized zirconia-based selective NO2 sensor using sol-gel derived Nb2O5 sensing-electrode. Sens. Actuators B Chem. 2017, 238, 105–110. [Google Scholar] [CrossRef]
- Tho, N.D.; Giang, H.T.; Ngan, P.Q.; Thai, G.H.; Tuoi, N.T.M.; Toan, N.N.; Thang, P.D.; Nhat, H.N. High temperature calcination for analyzing influence of 3d transition metals on gas sensing performance of mixed potential sensor Pt/YSZ/LaMO3 (M = Mn, Fe, Co, Ni). Electrochim. Acta 2016, 190, 215–220. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, C.; Feng, T.; Jiang, D. Sensing behavior of mixed potential NO2 sensors equipped with LaMO3 (M = Fe or Cr) sensing electrodes. Ionics 2015, 21, 1725–1730. [Google Scholar] [CrossRef]
- Wu, L.; Xia, J.; Wu, J.; Li, Q. A mixed-potential-type NO2 sensor based on a layered-structure Bi2W2O9 sensing electrode. Ionics 2015, 21, 3239–3244. [Google Scholar] [CrossRef]
- Wu, L.; Xia, J.; Shi, W.; Jiang, D.; Li, Q. NO2-sensing propertiesof La0.65Sr0.35MnO3 synthesized by self-propagating combustion. Ionics 2016, 22, 927–934. [Google Scholar] [CrossRef]
- Tho, N.D.; Ngan, P.Q.; Thai, G.H.; Tuoi, N.T.M.; Toan, N.N.; Giang, H.T. Effect of sintering temperature of mixed potential sensor Pt/YSZ/LaFeO3 on gas sensing performance. Sens. Actuators B Chem. 2016, 224, 747–754. [Google Scholar] [CrossRef]
- Giang, H.T.; Duy, H.T.; Ngan, P.Q.; Thai, G.H.; Toan, N.N. High sensitivity and selectivity of mixed potential sensor based on Pt/YSZ/SmFeO3 to NO2 gas. Sens. Actuators B Chem. 2013, 183, 550–555. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, Y.; Tong, Y.; Zou, H.; Peng, J.; Zheng, X. Mixed-Potential-Type Gas Sensors Based on Pt/YSZ Film/LaFeO3 for Detecting NO2. J. Electron. Mater. 2017, 46, 6895–6900. [Google Scholar] [CrossRef]
- Zhang, H.; Yi, J.; Jiang, X. Fast Response, Highly Sensitive and Selective Mixed-Potential H2 Sensor Based on (La, Sr)(Cr, Fe)O3-δ Perovskite Sensing Electrode. ACS Appl. Mater. Interfaces 2017, 9, 17218–17225. [Google Scholar] [CrossRef] [PubMed]
- Swenson, H.; Stadie, N.P. Langmuir’s Theory of Adsorption: A Centennial Review. Langmuir ACS J. Surf. Coll. 2019, 35, 5409–5426. [Google Scholar] [CrossRef]
- Murade, P.A.; Sangawar, V.S.; Chaudhari, G.N.; Kapse, V.D.; Bajpeyee, A.U. Acetone Gas-Sensing Performance of Sr-Doped Nanostructured LaFeO3 Semiconductor Prepared by Citrate Sol–Gel Route. Curr. Appl. Phys. 2011, 11, 451–456. [Google Scholar] [CrossRef]
- Liu, X.; Ji, H.; Gu, Y.; Xu, M. Preparation and Acetone Sensitive Characteristics of Nano-LaFeO3 Semiconductor Thin Films by Polymerization Complex Method. Mater. Sci. Eng. B 2006, 133, 98–101. [Google Scholar] [CrossRef]
Sensor Structure | Conc (ppm) | Response (mV) | Temp (°C) | Ref. |
---|---|---|---|---|
NiO/YSZ/Pt | 100 | 106 | 850 | [18] |
Nb2O5/YSZ/Pt | 400 | 35 | 800 | [26] |
In2O3/YSZ/Pt | 100 | 126 | 700 | [16] |
CoTaO6/YSZ/Pt | 100 | 93 | 650 | [17] |
LaFeO3/YSZ/Pt | 60 | 45 | 550 | [27] |
LaFeO3/YSZ/Pt | 100 | 9 | 550 | [28] |
Bi2W2O9/YSZ/Pt | 100 | 20 | 500 | [29] |
La0.65Sr0.35MnO3/YSZ/Pt | 100 | 48 | 500 | [30] |
LaFeO3/YSZ/Pt | 100 | 60 | 450 | [31] |
SmFeO3/YSZ/Pt | 90 | 130 | 400 | [32] |
LaFeO3/YSZ/Pt | 100 | 164 | 300 | [33] |
LaFeO3/YSZ/Pt | 100 | 81 | 250 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, H.; Sun, J.; Wu, C.; Liu, Z. High Performance Mixed Potential Type NO2 Gas Sensor Based on Porous YSZ Layer Formed with Graphite Doping. Sensors 2019, 19, 3337. https://doi.org/10.3390/s19153337
Hong H, Sun J, Wu C, Liu Z. High Performance Mixed Potential Type NO2 Gas Sensor Based on Porous YSZ Layer Formed with Graphite Doping. Sensors. 2019; 19(15):3337. https://doi.org/10.3390/s19153337
Chicago/Turabian StyleHong, Hao, Jianwen Sun, Cinan Wu, and Zewen Liu. 2019. "High Performance Mixed Potential Type NO2 Gas Sensor Based on Porous YSZ Layer Formed with Graphite Doping" Sensors 19, no. 15: 3337. https://doi.org/10.3390/s19153337
APA StyleHong, H., Sun, J., Wu, C., & Liu, Z. (2019). High Performance Mixed Potential Type NO2 Gas Sensor Based on Porous YSZ Layer Formed with Graphite Doping. Sensors, 19(15), 3337. https://doi.org/10.3390/s19153337