Next Article in Journal
Can You Ink While You Blink? Assessing Mental Effort in a Sensor-Based Calligraphy Trainer
Next Article in Special Issue
A Three-Dimensional Finite Element Analysis Model for SH-SAW Torque Sensors
Previous Article in Journal
A Novel Centralized Range-Free Static Node Localization Algorithm with Memetic Algorithm and Lévy Flight
Previous Article in Special Issue
Wireless Readout of Multiple SAW Temperature Sensors
Order Article Reprints
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:

Correction: Design and Simulation of a Wireless SAW–Pirani Sensor with Extended Range and Sensitivity

Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Carinthia Institute for Smart Materials and Manufacturing Technologies (CiSMAT), Carinthia University of Applied Sciences, 9524 Villach/St. Magdalen, Austria
Dipartimento di Ingegneria Industriale, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
Author to whom correspondence should be addressed.
Sensors 2019, 19(14), 3243;
Received: 26 June 2019 / Accepted: 18 July 2019 / Published: 23 July 2019
(This article belongs to the Special Issue Advances in Surface Acoustic Wave Sensors)
The authors wish to make the following erratum to Reference [1]:
The Table 2 below contained false reference numbers. The references were corrected. The corrected references are also available below.
The authors would like to apologize for any inconvenience caused to the readers by these changes.
Corrected references for Reference [1]
  • Figliola, R.S.; Beasley, D.E. Theory and design for mechanical measurements. Meas. Sci. Technol. 1996, 12, 1743.
  • Pace, E.L. Scientific foundations of vacuum technique (Dushman, Saul). J. Chem. Educ. 1962, 39, A606.
  • Völklein, F.; Grau, M.; Meier, A.; Hemer, G.; Breuer, L.; Woias, P. Optimized MEMS Pirani sensor with increased pressure measurement sensitivity in the fine and high vacuum regime. J. Vac. Sci. Technol. A Vac. Surf. Film. 2013, 31, 061604.
  • Jitschin, W.; Ludwig, S. Dynamical behaviour of the Pirani sensor. Vacuum 2004, 75, 169–176.
  • Weng, P.K.; Shie, J.S. Micro-Pirani vacuum gauge. Rev. Sci. Instrum. 1994, 65, 492–499.
  • Grau, M.; Völklein, F.; Meier, A.; Kunz, C.; Kaufmann, I.; Woias, P. Optimized MEMS Pirani sensor with increased pressure measurement sensitivity in the fine and rough vacuum regimes. J. Vac. Sci. Technol. A Vac. Surf. Film. 2014, 33, 021601.
  • Xiao, B.; Dong, T.; Halvorsen, E.; Yang, Z.; Zhang, Y.; Hoivik, N.; Gu, D.; Tran, N.M.; Jakobsen, H. Integrated micro Pirani gauge based hermetical package monitoring for uncooled VOxbolometer FPAs. Microsyst. Technol. 2011, 17, 115–125.
  • Völklein, F.; Meier, A. Microstructured vacuum gauges and their future perspectives. Vacuum 2007, 82, 420–430.
  • Van Herwaarden, A.W.; Sarro, P.M. Performance of integrated thermopile vacuum sensors. J. Phys. E Sci. Instrum. 1988, 21, 1162–1167.
  • Völklein, F.; Schnelle, W. A vacuum microsensor for the low-vacuum range. Sens. Mater. 1991, 3, 41–48.
  • Piotto, M.; Del Cesta, S.; Bruschi, P. A Compact CMOS Compatible micro-Pirani Vacuum Sensor with Wide Operating Range and Low Power Consumption. Procedia Eng. 2016, 168, 766–769.
  • Mastrangelo, C.H.; Muller, R.S. Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor. IEEE J. Solid-State Circuits 1991, 26, 1998–2007.
  • Swart, N.R.; Nathan, A. An integrated CMOS polysilicon coil-based micro-Pirani gauge with high heat transfer efficiency. In Proceedings of the 1994 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 11–14 December 1994; pp. 135–138.
  • Chae, J.; Stark, B.H.; Najafi, K. A micromachined Pirani gauge with dual heat sinks. In Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, Maastricht, The Netherlands, 25–29 January 2004; pp. 532–535.
  • Moelders, N.; Daly, J.T.; Greenwald, A.C.; Johnson, E.A.; McNeal, M.P.; Patel, R.; Pralle, M.U.; Puscasu, I. Micro and Nanosystems Symposium, Boston 2004; Society, M.R., Ed.; MRS: Boston, MA, USA, 2004; p. 211.
  • Doms, M.; Bekesch, A.; Mueller, J. A microfabricated Pirani pressure sensor operating near atmospheric pressure. J. Micromech. Microeng. 2005, 15, 1504–1510.
  • Stark, B.H.; Junseok, C.; Kuo, A.; Oliver, A.; Khalil, N. A high-performance surface-micromachined Pirani gauge in SUMMIT V/spl trade. In Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005, Miami Beach, FL, USA, 30 January–3 February 2005; pp. 295–298.
  • Mitchell, J.; Lahiji, G.R.; Najafi, K. An Improved Performance Poly-Si Pirani Vacuum Gauge Using Heat-Distributing Structural Supports. J. Microelectromech. Syst. 2008, 17, 93–102.
  • Khosraviani, K.; Leung, A.M. The nanogap Pirani—A pressure sensor with superior linearity in an atmospheric pressure range. J. Micromech. Microeng. 2009, 19, 045007.
  • Li, Q.; Goosen, J.F.L.; van Beek, J.T.M.; van Keulen, F. A novel SOI Pirani sensor with triple heat sinks. Procedia Chem. 2009, 1, 160–163.
  • Jiang, W.; Wang, X.; Zhang, J. A single crystal silicon micro-Pirani vacuum gauge with high aspect ratio structure. Sens. Actuators A Phys. 2010, 163, 159–163.
  • Chen, C. Characterization of Gas Conductance of a Thermal Device with a V-Groove Cavity. IEEE Electron Device Lett. 2012, 33, 275–277.
  • Puers, R.; Reyntjens, S.; De Bruyker, D. The NanoPirani—An extremely miniaturized pressure sensor fabricated by focused ion beam rapid prototyping. Sens. Actuators A Phys. 2002, 97–98, 208–214.
  • Moutaouekkil, M.; Talbi, A.; Viard, R.; Gerbedoen, J.C.; Okada, E.; Elmazria, O.; Preobrazhensky, V.; Merlen, A.; Pernod, P.; Joint International Laboratory LIA LICS/LEMAC. Elaboration of a Novel Design Pirani Pressure Sensor for High Dynamic Range Operation and Fast Response Time. Procedia Eng. 2015, 120, 225–228.
  • Mailly, F.; Dumas, N.; Pous, N.; Latorre, L.; Garel, O.; Martincic, E.; Verjus, F.; Pellet, C.; Dufour-Gergam, E.; Nouet, P. Pirani pressure sensor for smart wafer-level packaging. Sens. Actuators A Phys. 2009, 156, 201–207.
  • Robinson, A.M.; Haswell, P.; Lawson, R.P.W.; Parameswaran, M. A thermal conductivity microstructural pressure sensor fabricated in standard complementary metal-oxide semiconductor. Rev. Sci. Instrum. 1992, 63, 2026–2029.
  • Paul, O.; Haberli, A.; Malcovati, P.; Baltes, H. Novel integrated thermal pressure gauge and read-out circuit by CMOS IC technology. In Proceedings of the 1994 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 11–14 December 1994; pp. 131–134.
  • Shie, J.S.; Chou, B.C.S.; Chen, Y.M. High performance Pirani vacuum gauge. J. Vac. Sci. Technol. A 1995, 13, 2972–2979.
  • Jong, B.R.D.; Bula, W.P.; Zalewski, D.; Baar, J.J.V.; Wiegerink, R.J. Pirani pressure sensor with distributed temperature measurement. In Proceedings of the SENSORS, 2003 IEEE, Toronto, ON, Canada, 22–24 October 2003; Volume 1, pp. 718–722.
  • Zhang, F.T.; Tang, Z.; Yu, J.; Jin, R.C. A micro-Pirani vacuum gauge based on micro-hotplate technology. Sens. Actuators A Phys. 2006, 126, 300–305.
  • Takashima, N.; Kimura, M. Investigation on the Thin Film Pirani Vacuum Sensor Using A Constant Voltage Drive-Mode Diode-Heater. IEEJ Trans. Sens. Micromach. 2008, 128, 209–213.
  • Jeon, G.-J.; Kim, W.Y.; Shim, H.B.; Lee, H.C. Nanoporous Pirani sensor based on anodic aluminum oxide. Appl. Phys. Lett. 2016, 109, 123505.
  • Paul, O.; Baltes, H. Novel fully CMOS-compatible vacuum sensor. Sens. Actuators A Phys. 1995, 46, 143–146.
  • Wenzel, O.; Bak, C.K. The Micro Pirani™: A solid-state vacuum gauge with wide range. Vak. Forsch. Prax. 1998, 10, 298–301.
  • Qiu, Y.; Zhao, L.; Jin, Y. A novel micro pirani gauge with mono-wire sensing unit for microsystem application. In Proceedings of the 2009 International Conference on Electronic Packaging Technology & High Density Packaging, Beijing, China, 10–13 August 2009; pp. 467–470.
  • Brun, T.; Mercier, D.; Koumela, A.; Marcoux, C.; Duraffourg, L. Silicon nanowire based Pirani sensor for vacuum measurements. Appl. Phys. Lett. 2012, 101, 183506.
  • Ghouila-Houri, C.; Sindjui, R.; Moutaouekkil, M.; Elmazria, O.; Gallas, Q.; Garnier, E.; Merlen, A.; Viard, R.; Talbi, A.; Pernod, P. Nanogap Pirani Sensor Operating in Constant Temperature Mode for Near Atmospheric Pressure Measurements. Proceedings 2017, 1, 377.
  • Schelcher, G.; Fabbri, F.; Lefeuvre, E.; Brault, S.; Coste, P.; Dufour-Gergam, E.; Parrain, F. Modeling and characterization of MicroPirani vacuum gauges manufactured by a low-temperature film transfer process. J. Microelectromech. Syst. 2011, 20, 1184–1191.
  • Wang, X.; Liu, C.; Zhang, Z.; Liu, S.; Luo, X. A micro-machined Pirani gauge for vacuum measurement of ultra-small sized vacuum packaging. Sens. Actuators A Phys. 2010, 161, 108–113.
  • Santagata, F.; Iervolino, E.; Mele, L.; van Herwaarden, A.W.; Creemer, J.F.; Sarro, P.M. An analytical model and verification for MEMS Pirani gauges. J. Micromech. Microeng. 2011, 21, 115007.
  • Mercier, D.; Bordel, G.; Brunet-Manquat, P.; Verrun, S.; Elmazria, O.; Sarry, F.; Belgacem, B.; Bounoua, J. Characterization of a SAW-Pirani vacuum sensor for two different operating modes. Sens. Actuators A Phys. 2012, 188, 41–47.
  • Rokhlin, S.I.; Kornblit, L.; Gorodetsky, G. Surface acoustic wave pressure transducers and accelerometers. Prog. Aerosp. Sci. 1984, 21, 1–31.
  • Singh, K.J.; Elmazria, O.; Sarry, F.; Nicolay, P.; Ghoumid, K.; Belgacem, B.; Mercier, D.; Bounouar, J. Enhanced Sensitivity of SAW-Based Pirani Vacuum Pressure Sensor. IEEE Sens. J. 2011, 11, 1458–1464.
  • Joshi, S.G. Use of a surface-acoustic-wave (SAW) device to measure gas flow. IEEE Trans. Instrum. Meas. 1989, 38, 824–826.
  • Nicolay, P. Surface Acoustic Wave sensors: Applications for the Measurement of Low Pressures and High Temperatures. Ph.D. Thesis, Université Henri Poincaré, Nancy, France, 2007.
  • Nicolay, P.; Lenzhofer, M. A wireless and passive low-pressure sensor. Sensors 2014, 14, 3065–3076.
  • Fu, C.; Ke, Y.; Li, M.; Luo, J.; Li, H.; Liang, G.; Fan, P. Design and Implementation of 2.45 GHz Passive SAW Temperature Sensors with BPSK Coded RFID Configuration. Sensors 2017, 17, 1849.
  • Kandlikar, S.; Garimella, S.; Li, D.; Colin, S.; King, M.R. Heat Transfer and Fluid Flow in Minichannels and Microchannels; Elsevier Science: Oxford, UK, 2006.
  • Royer, D.; Dieulesaint, E. Ondes Élastiques Dans les Solides; Masson: Paris, France, 1996; p. 321.
  • Kalempa, D.; Sharipov, F. Numerical modelling of thermoacoustic waves in a rarefied gas confined between coaxial cylinders. Vacuum 2014, 109, 326–332.


  1. Toto, S.; Nicolay, P.; Morini, G.L.; Rapp, M.; Korvink, J.G.; Brandner, J.J. Design and Simulation of a Wireless SAW–Pirani Sensor with Extended Range and Sensitivity. Sensors 2019, 19, 2421. [Google Scholar] [CrossRef] [PubMed]
Table 2. Detection principles and pressure ranges of micro-electro-mechanical system (MEMS) Pirani gauges.
Table 2. Detection principles and pressure ranges of micro-electro-mechanical system (MEMS) Pirani gauges.
ResearcherType of GaugePressure Range (Pa)
Van Herwaarden and Sarro, 1988 [9]Heated cantilever combined with thermopile0.13–13,300
Völklein and Schnelle, 1991 [10]Heated resistor combined with thermopile0.13–10
Piotto et al., 2016 [11]Heated resistor with thermopile0.3–105
Mastrangelo and Muller, 1991 [12]Microbridge10–10,000
Swart et al., 1994 [13]Microbridge 13–1.33 × 105
Chae et al., 2004 [14]Microbridge2.6–267
Moelders et al., 2004 [15]Microbridge1.33–133
Doms et al., 2005 [16]Microbridge100–105
Stark et al., 2005 [17]Microbridge1.33–106
Mitchell et al., 2008 [18]Microbridge1.33–105
Khosraviani and Leung, 2009 [19]Microbridge13.3–106
Li et al., 2009 [20]Microbridge10.6–26,665
Jiang et al., 2010 [21]Microbridge0.1–1,000
Chen, 2012 [22]Microbridge133–1.33 × 105
Puers et al., 2002 [23]Microbridge100–107
Moutaouekkil et al., 2015 [24]Microbridge1,000–105
Mailly et al., 2009 [25]Microbridge20–20,000
Robinson et al., 1992 [26]Resistor on dielectric membrane10–13,300
Paul et al., 1994 [27]Resistor on dielectric membrane100–105
Weng and Shie, 1994 [5]Resistor on dielectric membrane1.33 × 10−5–133
Shie et al., 1995 [28]Resistor on dielectric membrane13.3–1.33 × 107
De Jong et al., 2003 [29]Resistor on dielectric membrane10–20,000
Zhang et al., 2006 [30]Resistor on dielectric membrane10–105
Völklein et al., 2013 [3]Resistor on dielectric membrane1.33 × 10−4–1332
Grau et al., 2014 [6]Resistor on dielectric membrane0.13–105
Xiao et al., 2011 [7]Resistor on dielectric membrane1–1,000
Takashima et al., 2008 [31]Resistor on dielectric membrane0.002–105
Jeon et al., 2016 [32]Resistor on dielectric membrane0.013–105
Paul and Baltes, 1995 [33]Resistor on dielectric membrane100–106
Wenzel and Bak, 1998 [34]Resistor on diaphragm10–105
Qiu et al., 2009 [35]Metallic wire1–100
Brun et al., 2012 [36]Silicon nanowire50–105
Ghouila-Houri et al., 2017 [37]Microwire10,000–8 × 105
Schelcher et al., 2011 [38]Ni-microbeam3.3–105
Wang et al., 2010 [39]Microplate0.1–105
Santagata et al., 2011 [40]Tube-shaped0.133–1.33 × 105
Mercier et al., 2012 [41]Cr/Au-resistor on LiNbO3-substrate (SAW device)0.001–105

Share and Cite

MDPI and ACS Style

Toto, S.; Nicolay, P.; Morini, G.L.; Rapp, M.; Korvink, J.G.; Brandner, J.J. Correction: Design and Simulation of a Wireless SAW–Pirani Sensor with Extended Range and Sensitivity. Sensors 2019, 19, 3243.

AMA Style

Toto S, Nicolay P, Morini GL, Rapp M, Korvink JG, Brandner JJ. Correction: Design and Simulation of a Wireless SAW–Pirani Sensor with Extended Range and Sensitivity. Sensors. 2019; 19(14):3243.

Chicago/Turabian Style

Toto, Sofia, Pascal Nicolay, Gian Luca Morini, Michael Rapp, Jan G. Korvink, and Juergen J. Brandner. 2019. "Correction: Design and Simulation of a Wireless SAW–Pirani Sensor with Extended Range and Sensitivity" Sensors 19, no. 14: 3243.

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop