Gas Void Fraction Measurement of Gas-Liquid Two-Phase CO2 Flow Using Laser Attenuation Technique
Abstract
:1. Introduction
2. Methodology
2.1. Sensor Design
2.2. Infrared Laser Measurement Principle
3. Experimental Section
4. Experimental Results and Discussions
4.1. Flow Pattern Analysis
4.2. Experimental Results in the Horizontal Test Section
4.3. Experimental Results in the Vertical Test Section
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- Kemper, J. Biomass and Carbon Dioxide Capture and Storage: A Review. Int. J. Greenh. Gas Control. 2015, 40, 401–430. [Google Scholar] [CrossRef]
- Wen, C.; Karvounis, N.; Wahher, J.H.; Yan, Y.; Feng, Y.; Yang, Y. An Efficient Approach to Separate CO2 Using Supersonic Flows for Carbon Capture and Storage. Appl. Energy 2019, 238, 311–319. [Google Scholar] [CrossRef]
- Aursand, P.; Hammer, M.; Munkejord, S.T.; Wilhelmsen, O. Pipeline Transport of CO2 Mixtures: Models for Transient Simulation. Int. J. Greenh. Gas Control. 2013, 15, 174–185. [Google Scholar] [CrossRef]
- Collie, G.J.; Nazeri, M.; Jahanbakhsh, A.; Lin, C.; Maroto-Valer, M.M. Review of Flowmeters for Carbon Dioxide Transport in CCS Applications. Greenh. Gases 2017, 7, 10–28. [Google Scholar] [CrossRef]
- Huang, S.; Wu, X.; Zong, B.; Ma, Y.; Guo, X.; Wang, D. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe. Sci. Technol. Nucl. Install. 2018, 2018, 1–14. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z.; Wang, B.; Li, H. A New Method for The Online Voidage Measurement of The Gas-Oil Two-Phase Flow. IEEE Trans. Instrum. Meas. 2009, 58, 1571–1577. [Google Scholar]
- Olerni, C.; Jia, J.; Wang, M. Measurement of Air Distribution and Void Fraction of An Upwards Air-Water Flow Using Electrical Resistance Tomography and A Wire-Mesh Sensor. Meas. Sci. Technol. 2013, 24, 035403. [Google Scholar] [CrossRef]
- Ofuchi, C.Y.; Eidt, H.K.; Rodrigues, C.C.; Dos Santos, E.N.; Dos Santos, P.H.D.; Da Silva, M.J.; Neves, F., Jr.; Domingos, P.V.S.R.; Morales, R.E.M. Multiple Wire-Mesh Sensors Applied to the Characterization of Two-Phase Flow inside a Cyclonic Flow Distribution System. Sensors 2019, 19, 193. [Google Scholar] [CrossRef]
- Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.; Setayeshi, S.; Peyvandi, R.G. A Radiation-Based Hydrocarbon Two-Phase Flow Meter for Estimating of Phase Fraction Independent of Liquid Phase Density in Stratified Regime. Flow Meas. Instrum. 2015, 46, 25–32. [Google Scholar] [CrossRef]
- Roshani, G.H.; Nazemi, E. A High Performance Gas-Liquid Two-Phase Flow Meter Based on Gamma-Ray Attenuation and Scattering. Nuc Sci. Tech. 2017, 28, 169. [Google Scholar] [CrossRef]
- O’Neill, K.T.; Brancato, L.; Stanwix, P.L.; Fridjonsson, E.O.; Johns, M.L. Two-Phase Oil/Water Flow Measurement Using An Earth’s Field Nuclear Magnetic Resonance Flow Meter. Chem. Eng. Sci. 2019, 202, 222–237. [Google Scholar] [CrossRef]
- Sankey, M.H.; Holland, D.J.; Sederman, A.J.; Gladden, L.F. Magnetic Resonance Velocity Imaging of Liquid and Gas Two-Phase Flow in Packed Beds. J. Magn. Reson. 2009, 196, 142–148. [Google Scholar] [CrossRef]
- Chakraborty, S.; Keller, E.; Talley, J.; Srivastav, A.; Ray, A.; Kim, S. Void Fraction Measurement in Two-Phase Flow Processes Via Symbolic Dynamic Filtering of Ultrasonic Signals. Meas. Sci. Technol. 2009, 20, 023001. [Google Scholar] [CrossRef]
- Al-lababidi, S.; Addali, A.; Yeung, H.; Mba, D.; Khan, F. Gas Void Fraction Measurement in Two-Phase Gas/Liquid Slug Flow Using Acoustic Emission Technology. J. Vib. Acoust. 2009, 131, 064501. [Google Scholar] [CrossRef]
- Yamada, M.; Saito, T. A Newly Developed Photoelectric Optical Fiber Probe for Simultaneous Measurements of A CO2 Bubble Chord Length, Velocity, and Void Fraction and the Local CO2 Concentration in the Surrounding Liquid. Flow Meas. Instrum. 2012, 27, 8–19. [Google Scholar] [CrossRef]
- Julia, J.E.; Harteveld, W.K.; Mudde, R.F.; Van den Akker, H. On the Accuracy of the Void Fraction Measurements Using Optical Probes in Bubbly Flows. Rev. Sci. Instrum. 2005, 76, 035103. [Google Scholar] [CrossRef]
- Dutra, G.; Martelli, C.; Da Silva, M.J.; Patyk, R.L.; Morales, R.E.M. Air Flow Detection in Crude Oil by Infrared Light. Sensors 2017, 17, 1278. [Google Scholar] [CrossRef] [PubMed]
- Mallach, M.; Gevers, M.; Gebhardt, P.; Musch, T. Fast and Precise Soft-Field Electromagnetic Tomography Systems for Multiphase Flow Imaging. Energies 2018, 11, 1199. [Google Scholar] [CrossRef]
- Sardeshpande, M.V.; Harinarayan, S.; Ranade, V.V. Void Fraction Measurement Using Electrical Capacitance Tomography and High Speed Photography. Chem. Eng. Res. Des. 2015, 94, 1–11. [Google Scholar] [CrossRef]
- Li, H.; Ji, H.; Huang, Z.; Wang, B.; Li, H.; Wu, G. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels. Sensors 2016, 16, 159. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Yu, D.; Wu, H.; Gong, J.; Li, Y.; Zhou, T.; Zheng, L. Optical Method for Flow Patterns Discrimination, Slug and Pig Detection in Horizontal Gas Liquid Pipe. Flow Meas. Instrum. 2013, 32, 96–102. [Google Scholar]
- Mithran, N.; Venkatesan, M. Effect of IR Transceiver Orientation on Gas/Liquid Two-Phase Flow Regimes. Flow Meas. Instrum. 2017, 58, 12–20. [Google Scholar] [CrossRef]
- DiFilippo, E.L.; Brusseau, M.L. Application of Light Reflection Visualization for Measuring Organic-Liquid Saturation for Two-Phase Systems in Two-Dimensional Flow Cells. Environ. Eng. Sci. 2011, 28, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Boschan, A.; Poblete, M.; Lucrecia Roht, Y.; Ippolito, I.; Chertcoff, R. Light Transmission Measurement of Solute Dispersion in Non-Brownian Suspension Flow. Eur. Phys. J. Appl. Phys. 2014, 65. [Google Scholar] [CrossRef]
- Arunkumar, S.; Adhavan, J.; Venkatesan, M.; Das, S.K.; Balakrishnan, A.R. Two Phase Flow Regime Identification Using Infrared Sensor and Volume of Fluids Method. Flow Meas. Instrum. 2016, 51, 49–54. [Google Scholar] [CrossRef]
- Schlegel, J.P.; Sawant, P.; Paranjape, S.; Ozar, B.; Hibiki, T.; Ishii, M. Void Fraction and Flow Regime in Adiabatic Upward Two-Phase Flow in Large Diameter Vertical Pipes. Nucl. Eng. Des. 2009, 239, 2864–2874. [Google Scholar] [CrossRef]
- Du, M.; Jin, N.; Gao, Z.; Wang, Z.; Zhai, L. Flow Pattern and Water Holdup Measurements of Vertical Upward Oil-Water Two-Phase Flow in Small Diameter Pipes. Int. J. Multiph. Flow. 2012, 41, 91–105. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Duan, Q. Gas Void Fraction Measurement of Gas-Liquid Two-Phase CO2 Flow Using Laser Attenuation Technique. Sensors 2019, 19, 3178. https://doi.org/10.3390/s19143178
Wu H, Duan Q. Gas Void Fraction Measurement of Gas-Liquid Two-Phase CO2 Flow Using Laser Attenuation Technique. Sensors. 2019; 19(14):3178. https://doi.org/10.3390/s19143178
Chicago/Turabian StyleWu, Haochi, and Quansheng Duan. 2019. "Gas Void Fraction Measurement of Gas-Liquid Two-Phase CO2 Flow Using Laser Attenuation Technique" Sensors 19, no. 14: 3178. https://doi.org/10.3390/s19143178
APA StyleWu, H., & Duan, Q. (2019). Gas Void Fraction Measurement of Gas-Liquid Two-Phase CO2 Flow Using Laser Attenuation Technique. Sensors, 19(14), 3178. https://doi.org/10.3390/s19143178