Perrogator: A Portable Energy-Efficient Interrogator for Dynamic Monitoring of Wavelength-Based Sensors in Wearable Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. FBG Interrogator
2.2. Caracterization and Validation of the Proposed Interrogator
2.3. Wearable Application
3. Results and Discussions
3.1. Portable Interrogator Characterization
3.2. Study Case 1: Knee Joint Assessment
3.3. Study Case 2: Breath and Heart Rate Assessment
3.4. Comparisons with Commercial Solutions and Future Perpectives
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cusano, A.; Cutolo, A.; Albert, J. Fiber Bragg Grating Sensors: Market. Overview and New Perspectives; Bentham Science Publishers: Potomac, MD, USA, 2009. [Google Scholar]
- Leal-Junior, A.G.; Marques, C.; Frizera, A.; Pontes, M.J. Multi-interface level in oil tanks and applications of optical fiber sensors. Opt. Fiber Technol. 2018, 40, 40–82. [Google Scholar] [CrossRef]
- Mishra, V.; Singh, N.; Tiwari, U.; Kapur, P. Fiber grating sensors in medicine: Current and emerging applications. Sensors Actuators A Phys. 2011, 167, 279–290. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Frizera, A.; Vargas-Valencia, L.; dos Santos, W.M.; Bó, A.P.; Siqueira, A.A.; Pontes, M.J. Polymer optical fiber sensors in wearable devices: Toward novel instrumentation approaches for gait assistance devices. IEEE Sens. J. 2018, 18, 7085–7092. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Díaz, C.R.; Jiménez, M.F.; Leitão, C.; Marques, C.; Pontes, M.J.; Frizera, A. Polymer optical fiber based sensor system for smart walker instrumentation and health assessment. IEEE Sens. J. 2018, 1748, 1. [Google Scholar] [CrossRef]
- Grattan, K.T.V.; Sun, T. Fiber optic sensor technology: An overview. Sens. Actuators A Phys. 2000, 82, 40–61. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Frizera-Neto, A.; Marques, C.; Pontes, M. Measuement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect. Sensors 2018, 18, 916. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ning, T.; .Zhang, C.; Wen, X.; Li, J.; Zhang, C. Liquid level and temperature sensor based on an asymmetrical fiber Mach-Zehnder interferometer combined with a fiber Bragg grating. Opt. Commun. 2016, 372, 196–200. [Google Scholar] [CrossRef]
- Mizuno, Y.; Hayashi, N.; Fukuda, H.; Song, K.Y.; Nakamura, K. Ultrahigh-speed distributed Brillouin reflectometry. Light Sci. Appl. 2016, 5, e16184. [Google Scholar] [CrossRef]
- Cuevas, A.R.; Fontana, M.; Rodriguez-Cobo, L.; Lomer, M.; López-Higuera, J.M. Machine learning for turning optical fiber specklegram sensor into a spatially-resolved sensing system. Proof of concept. J. Light. Technol. 2018, 36, 3733–3738. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Chen, S.; Cheng, F.; Wang, H.; Peng, W. Surface plasmon resonance biosensor based on smart phone platforms. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Marques, C.A.F.; Min, R.; Junior, A.L.; Antunes, P.; Fasano, A.; Woyessa, G.; Nielsen, H.K.; Rasmussen, B.O.; Bang, O. Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser. Opt. Express 2018, 26, 2013. [Google Scholar] [CrossRef] [PubMed]
- Tosi, D. Review of chirped fiber bragg grating (CFBG) fiber-optic sensors and their applications. Sensors 2018, 18, 2147. [Google Scholar] [CrossRef] [PubMed]
- Large, M.C.J.; Moran, J.; Ye, L. The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF). Meas. Sci. Technol. 2009, 20, 034014. [Google Scholar] [CrossRef]
- Bilro, L.; Alberto, N.; Pinto, J.L.; Nogueira, R. Optical sensors based on plastic fibers. Sensors 2012, 12, 12184–12207. [Google Scholar] [CrossRef] [PubMed]
- Leal-Junior, A.G.; Theodosiou, A.; Min, R.; Casas, J.; Diaz, C.R.; dos Santos, W.M.; Pontes, M.J.; Siqueira, A.A.G.; Marques, C.A.F.; Kalli, K.; et al. Quasi-Distributed Torque and Displacement Sensing on a Series Elastic Actuator’s Spring using FBG arrays inscribed in CYTOP Fibers. IEEE Sens. J. 2019, 1748, 1. [Google Scholar] [CrossRef]
- Islam, M.; Ali, M.; Lai, M.H.; Lim, K.S.; Ahmad, H. Chronology of fabry-perot interferometer fiber-optic sensors and their applications: A review. Sensors 2014, 14, 7451–7488. [Google Scholar] [CrossRef] [PubMed]
- Díaz, C.A.; Marques, C.A.; Domingues, M.F.F.; Ribeiro, M.R.; Frizera-Neto, A.; Pontes, M.J.; André, P.S.; Antunes, P.F.C. A cost-effective edge-filter based FBG interrogator using catastrophic fuse effect micro-cavity interferometers. Meas. J. Int. Meas. Confed. 2018, 124, 486–493. [Google Scholar]
- Díaz, C.; Leitão, C.; Marques, C.; Domingues, M.; Alberto, N.; Pontes, M.; Frizera, A.; Ribeiro, M.R.N.; André, P.S.B.; Antunes, P.F.C. Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices. Sensors 2017, 17, 2414. [Google Scholar] [Green Version]
- Wei, L.; Khattak, A.; Martz, C.; Zhou, D.P. Tunable Multimode Fiber Based Filter and Its Application in Cost-Effective Interrogation of Fiber-Optic Temperature Sensors. IEEE Photonics J. 2017, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pachava, V.R.; Kamineni, S.; Madhuvarasu, S.S.; Putha, K.; Mamidi, V.R. FBG based high sensitive pressure sensor and its low-cost interrogation system with enhanced resolution. Photonic Sens. 2015, 5, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Wu, Z.; Zhang, Z.; Pan, W.; Luo, B.; Wang, P. High-speed FBG-based fiber sensor networks for semidistributed strain measurements. IEEE Photonics J. 2013, 5, 7200507. [Google Scholar]
- Babin, S.A.; Vlasov, A.A.; Dyshlyuk, A.V.; Shalagin, A.M.; Vitrik, O.B.; Kulchin, Y.N. Application of optical time-domain reflectometry for the interrogation of fiber Bragg sensors. Laser Phys. 2007, 17, 1335–1339. [Google Scholar]
- Zhang, H.; Fan, D.; Ma, Y.; Xiong, Z.; Pang, Y.; Chen, X.; Zhou, C. Interrogation of 5000 ultraweak fiber Bragg grating sensors using optical frequency domain reflectometry. Opt. Eng. 2018, 57, 1. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Majumder, S.; Mondal, T.; Deen, M. Wearable sensors for remote health monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Leal-Junior, A.G.; Frizera, A.; Avellar, L.M.; Pontes, M.J. Design considerations, analysis, and application of a low-cost, fully portable, wearable polymer optical fiber curvature sensor. Appl. Opt. 2018, 57, 6927. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Díaz, C.R.; Leitão, C.; Pontes, M.J.; Marques, C.; Frizera, A. Polymer optical fiber-based sensor for simultaneous measurement of breath and heart rate under dynamic movements. Opt. Laser Technol. 2019, 109, 429–436. [Google Scholar] [CrossRef]
- Pant, S.; Umesh, S.; Asokan, S. Knee angle measurement device using fiber bragg grating sensor. IEEE Sens. J. 2018, 18, 10034–10040. [Google Scholar] [CrossRef]
- Domingues, M.F.; Alberto, N.; Leitão, C.; Tavares, C.; de Lima, E.R.; Radwan, A.; Sucasas, V.; Rodriguez, J.; André, P.S.B.; Antunes, P.F.C. Insole optical fiber sensor architecturefor remote gait analysis—An eHealth Solution. IEEE Internet Things J. 2017, 4662, 1. [Google Scholar]
- Bonefacino, J.; Tam, H.Y.; Glen, T.S.; Cheng, X.; Pun, C.F.J.; Wang, J.; Lee, P.H.; Vincent Tse, M.L.; Boles, S.T. Ultra-fast polymer optical fibre Bragg grating inscription for medical devices. Light Sci. Appl. 2018, 7, 17161. [Google Scholar] [CrossRef] [PubMed]
- Leal-Junior, A.G.; Theodosiou, A.; Díaz, CR.; Marques, C.; Pontes, M.J.; Kalli, K.; Frizera, A. Simultaneous measurement of axial strain, bending and torsion with a Single fiber Bragg grating in CYTOP fiber. J. Light Technol. 2018, 37, 971–980. [Google Scholar] [CrossRef]
- Diaz, C.A.; Leal-Junior, A.G.; Andre, P.S.; da Costa Antunes, P.F.; Pontes, M.J.; Frizera-Neto, A.; Ribeiro, M.R. Liquid level measurement based on FBG-embedded diaphragms with temperature compensation. IEEE Sens. J. 2017, 18, 193–200. [Google Scholar] [CrossRef]
- Kirtley, C. Clinical Gait Analysis: Theory and Practice; Elsevier: Philadelphia, UK, 2006. [Google Scholar]
- Smith, P.N.; Refshauge, K.M.; Scarvell, J.M. Development of the concepts of knee kinematics. Arch. Phys. Med. Rehabil. 2003, 84, 1895–1902. [Google Scholar] [CrossRef]
- Oliveira, R.; Bilro, L.; Nogueira, R. Fabry-Pérot cavities based on photopolymerizable resins for sensing applications. Opt. Mater. Express 2018, 8, 2208. [Google Scholar] [CrossRef]
- Oliveira, R.F.; Bilro, L.; Nogueira, R.; Rocha, A.M.M. Adhesive based Fabry-Pérot hydrostatic pressure sensor with improved and controlled sensitivity. J. Light. Technol. 2019, 8724, 1. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Ferreira, M.S.; Silva, S.O.; Kobelke, J.; Schuster, K.; Bierlich, J.; Frazão, O. Fiber Fabry-Perot interferometer for curvature sensing. Photonic Sens. 2016, 6, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Obeid, D.; Sadek, S.; Zaharia, G.; el Zein, G. Doppler radar for heartbeat rate and heart rate variability extraction. E Health Bioeng. 2011, 24–27. [Google Scholar]
- Pai, A.; Riepold, M.; Trächtler, A. Model-based precision position and force control of SMA actuators with a clamping application. Mechatronics 2018, 50, 303–320. [Google Scholar] [CrossRef]
- Riepold, M.; Maslo, S.; Han, G.; Henke, C.; Trächtler, A. Open-loop linearization for piezoelectric actuator with inverse hysteresis model. Vibroeng. Procedia 2019, 22, 47–52. [Google Scholar] [CrossRef]
- Micron, O. FFP-TF2 Fiber Fabry-Perot Tunable Filter Technical Reference; Micron Optics Inc.: Atlanta, GA, USA, 2004. [Google Scholar]
- Sabat, R.G.; Mukherjee, B.K.; Ren, W.; Yang, G. Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics. J. Appl. Phys. 2007, 101, 064111. [Google Scholar] [CrossRef]
- Tzou, H.S.; Ye, R. Pyroelectric and thermal strain effects of piezoelectric (PVDF and PZT) devices. Mech. Syst. Signal. Process 1996, 10, 459–469. [Google Scholar] [CrossRef]
- Walker, P.S.; Kurosawa, H.; Rovick, J.S.; Zimmerman, R.A. External knee joint design based on normal motionc. J. Rehabil. Res. 1985, 22, 9–22. [Google Scholar] [CrossRef]
- Bilro, L.; Oliveira, J.G.; Pinto, J.L.; Nogueira, R.N. A reliable low-cost wireless and wearable gait monitoring system based on a plastic optical fibre sensor. Meas. Sci. Technol. 2011, 22, 045801. [Google Scholar] [CrossRef]
- Forner-Cordero, A.; Pons, J.L.; Turowska, E.A.; Schiele, A.; Baydal-Bertomeu, J.M.; Garrido, D.; Molla, F.; Belda-lois, J.M.; Poveda, R.; Barbera, R. Kinematics and Dynamics of Wearable Robots, in Wearable Robots, Chichester; John Wiley & Sons: New Jersey, NJ, USA, 2008; pp. 47–85. [Google Scholar]
- Coppetti, T.; Brauchlin, A.; Müggler, S.; Attinger-Toller, A.; Templin, C.; Schönrath, F. Accuracy of smartphone apps for heart rate measurement. Eur. J. Prev. Cardiol. 2017, 24, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
DAC Resolution | Full Scale FFP-TF Resolution (pm) | Maximum FFP-TF Resolution (pm) | Frequency Rate (Hz) |
---|---|---|---|
4096 | 11.01 | 3.82 | 26.65 |
2048 | 22.02 | 7.65 | 53.30 |
1024 | 44.04 | 11.47 | 106.61 |
512 | 88.08 | 15.30 | 213.22 |
Parameter | Symbol | Value |
---|---|---|
Wavelength sensitivity—axial strain | sλ,ε | 1.28 pm/με |
Reflectivity sensitivity—axial strain | sr,ε | −5.14 × 10−5 με−1 |
Wavelength sensitivity—bending angle | sλ,α | 1.16 pm/° |
Reflectivity sensitivity—bending angle | sr,α | −7.98 × 10−3/° |
Interrogator/Parameter | SM125 | I-MON 256 HS | Perrogator |
---|---|---|---|
Number of channels | 4 | 1 | 1 |
Scan frequency (Hz) | 2 | 17000 | 213 |
Accuracy (pm) | 1 | 5 | 12 |
Repeatability (pm) | 0.5 | 5 | 60 |
Dynamic range (dB) | 50 | 30 | 25 |
Wavelength range (nm) | 80 | 45 | 45 |
Battery powered | No | No | Yes |
Wireless communication | No | No | Yes |
Power consumption (W) | 20 | Not reported | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
R. Diaz, C.A.; Leal-Junior, A.G.; M. Avellar, L.; C. Antunes, P.F.; Pontes, M.J.; Marques, C.A.; Frizera, A.; N. Ribeiro, M.R. Perrogator: A Portable Energy-Efficient Interrogator for Dynamic Monitoring of Wavelength-Based Sensors in Wearable Applications. Sensors 2019, 19, 2962. https://doi.org/10.3390/s19132962
R. Diaz CA, Leal-Junior AG, M. Avellar L, C. Antunes PF, Pontes MJ, Marques CA, Frizera A, N. Ribeiro MR. Perrogator: A Portable Energy-Efficient Interrogator for Dynamic Monitoring of Wavelength-Based Sensors in Wearable Applications. Sensors. 2019; 19(13):2962. https://doi.org/10.3390/s19132962
Chicago/Turabian StyleR. Diaz, Camilo A., Arnaldo Gomes Leal-Junior, Letícia M. Avellar, Paulo F. C. Antunes, Maria J. Pontes, Carlos A. Marques, Anselmo Frizera, and Moisés R. N. Ribeiro. 2019. "Perrogator: A Portable Energy-Efficient Interrogator for Dynamic Monitoring of Wavelength-Based Sensors in Wearable Applications" Sensors 19, no. 13: 2962. https://doi.org/10.3390/s19132962
APA StyleR. Diaz, C. A., Leal-Junior, A. G., M. Avellar, L., C. Antunes, P. F., Pontes, M. J., Marques, C. A., Frizera, A., & N. Ribeiro, M. R. (2019). Perrogator: A Portable Energy-Efficient Interrogator for Dynamic Monitoring of Wavelength-Based Sensors in Wearable Applications. Sensors, 19(13), 2962. https://doi.org/10.3390/s19132962