Characterization of Nile Red as a Tracer for Laser-Induced Fluorescence Spectroscopy of Gasoline and Kerosene and Their Mixture with Biofuels
Abstract
1. Introduction
2. Description of the Experiment
Experimental setup
3. Fuels and Dye Used
4. Results
4.1. Effect of Dye Concentration on Fluorescence Spectra
4.2. Temperature-Dependent Absorption and Emission Spectra
4.3. Fuel-Dependent Absorption and Emission Spectra
4.4. Photo-Dissociation
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koegl, M.; Hofbeck, B.; Will, S.; Zigan, L. Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates. Appl. Energy 2018, 209, 426–434. [Google Scholar] [CrossRef]
- Koegl, M.; Mishra, Y.N.; Storch, M.; Conrad, C.; Berrocal, E.; Will, S.; Zigan, L. Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing. Int. J. Spray Combust. Dyn. 2018, 16. [Google Scholar] [CrossRef]
- Richter, S.; Kathrotia, T.; Naumann, C.; Kick, T.; Slavinskaya, N.; Braun-Unkhoff, M.; Riedel, U. Experimental and modeling study of farnesane. Fuel 2018, 215, 22–29. [Google Scholar] [CrossRef]
- Millo, F.; Bensaid, S.; Fino, D.; Marcano, S.J.C.; Vlachos, T.; Debnath, B.K. Influence on the performance and emissions of an automotive Euro 5 diesel engine fueled with F30 from Farnesane. Fuel 2014, 138, 134–142. [Google Scholar] [CrossRef]
- Deutsches Institut für Luft- und Raumfahrt. NASA and DLR Investigate the Impact of Aviation on the Climate—Joint Flight Tests on Alternative Fuel Emissions. Available online: https://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10081/151_read-25658/#/gallery/20878 (accessed on 2 April 2019).
- Fansler, T.D.; Parrish, S.E. Spray measurement technology: A review. Meas. Sci. Technol. 2015, 26, 012002. [Google Scholar] [CrossRef]
- Coppeta, J.; Rogers, C. Dual Emission Laser Induced Fluorescence for Direct Planar Scalar Behavior Measurements. Exp. Fluids 1998, 25, 1–15. [Google Scholar] [CrossRef]
- Lavieille, P.; Lemoine, F.; Lavergne, G.; Lebouché, M. Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence. Exp. Fluids 2001, 31, 45–55. [Google Scholar] [CrossRef]
- Lavieille, P.; Lemoine, F.; Lavergne, G.; Virepinte, J.F.; Lebouché, M. Temperature measurements on droplets in monodisperse stream using laser-induced fluorescence. Exp. Fluids 2000, 29, 429–437. [Google Scholar] [CrossRef]
- Mishra, Y.N.; Abou Nada, F.; Polster, S.; Kristensson, E.; Berrocal, E. Thermometry in aqueous solutions and sprays using two-color LIF and structured illumination. Opt. Express 2016, 24, 4949–4963. [Google Scholar] [CrossRef]
- Sakakibara, J.; Adrian, R. Whole field measurement of temperature in water using two-color laser induced fluorescence. Exp. Fluids 1999, 26, 7–15. [Google Scholar] [CrossRef]
- Natrajan, V.K.; Christensen, K.T. Two-color laser-induced fluorescent thermometry for microfluidic systems. Meas. Sci. Technol. 2009, 20, 015401. [Google Scholar] [CrossRef]
- Coolen, M.C.J.; Kieft, R.N.; Rindt, C.C.M.; Van Steenhoven, A.A. Application of 2-D LIF temperature measurements in water using a Nd:YAG laser. Exp. Fluids 1999, 27, 420–426. [Google Scholar] [CrossRef]
- Kan, T.; Aoki, H.; Binh-Khiem, N.; Matsumoto, K.; Shimoyama, I. Ratiometric Optical Temperature Sensor Using Two Fluorescent Dyes Dissolved in an Ionic Liquid Encapsulated by Parylene Film. Sensors 2013, 13, 4138–4145. [Google Scholar] [CrossRef]
- Lind, S.; Zigan, L.; Trost, J.; Leipertz, A.; Will, S. Simultaneous two-dimensional measurement of fuel-air ratio and temperature in a direct-injection spark-ignition engine using a new tracer-pair laser-induced fluorescence technique. Int. J. Engine Res. 2015, 17, 120–128. [Google Scholar] [CrossRef]
- Trost, J.; Zigan, L.; Leipertz, A. Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence. Proc. Combust. Inst. 2013, 34, 3645–3652. [Google Scholar] [CrossRef]
- Klima, T.C.; Braeuer, A.S. Raman thermometry in water, ethanol and ethanol/nitrogen-mixtures from ambient to critical conditions. Anal. Chem. 2018, 91, 1043–1048. [Google Scholar] [CrossRef]
- Bahr, L.A.; Fendt, P.; Pang, Y.; Karl, J.; Hammer, T.; Braeuer, A.S.; Will, S. Temperature determination of superheated water vapor by rotational-vibrational Raman spectroscopy. Opt. Lett. 2018, 43, 4477–4480. [Google Scholar] [CrossRef]
- Hankel, R.F.; Gunther, A.; Wirth, K.E.; Leipertz, A.; Braeuer, A. Liquid phase temperature determination in dense water sprays using linear Raman scattering. Opt. Express 2014, 22, 7962–7971. [Google Scholar] [CrossRef]
- Smith, J.D.; Cappa, C.D.; Drisdell, W.S.; Cohen, R.C.; Saykally, R.J. Raman thermometry measurements of free evaporation from liquid water droplets. J. Am. Chem. Soc. 2006, 128, 12892–12898. [Google Scholar] [CrossRef]
- Kojima, J.; Nguyen, Q.-V. Single-shot rotational Raman thermometry for turbulent flames using a low-resolution bandwidth technique. Meas. Sci. Technol. 2008, 19, 015406. [Google Scholar] [CrossRef]
- Storch, M.; Lind, S.; Will, S.; Zigan, L. Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence. Appl. Opt. 2016, 55, 8532–8540. [Google Scholar] [CrossRef]
- Malarski, A.; Schurer, B.; Schmitz, I.; Zigan, L.; Flugel, A.; Leipertz, A. Laser sheet dropsizing based on two-dimensional Raman and Mie scattering. Appl. Opt. 2009, 48, 1853–1860. [Google Scholar] [CrossRef]
- Zeng, W.; Xu, M.; Zhang, Y.Y.; Wang, Z.K. Laser sheet dropsizing of evaporating sprays using simultaneous LIEF/MIE techniques. Proc. Combust. Inst. 2013, 34, 1677–1685. [Google Scholar] [CrossRef]
- Serpenguzel, A.; Kucuksenel, S.; Chang, R.K. Microdroplet identification and size measurement in sprays with lasing images. Opt. Express 2002, 10, 1118–1132. [Google Scholar] [CrossRef]
- Koegl, M.; Hofbeck, B.; Baderschneider, K.; Mishra, Y.N.; Huber, F.J.T.; Berrocal, E.; Will, S.; Zigan, L. Analysis of LIF and Mie signals from single micrometric droplets for instantaneous droplet sizing in sprays. Opt. Express 2018, 26, 31750–31766. [Google Scholar] [CrossRef]
- Park, S.; Cho, H.; Yoon, I.; Min, K. Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique. Meas. Sci. Technol. 2002, 13, 859–864. [Google Scholar] [CrossRef]
- Koegl, M.; Mishra, N.M.; Hofbeck, B.; Baderschneider, K.; Huber, F.J.T.; Pracht, J.; Berrocal, E.; Will, S.; Zigan, L. 3D LIF/Mie planar droplet sizing in IC engine sprays using single-droplet calibration data. In Proceedings of the ICLASS 2018: 14th International Conference on Liquid Atomization & Spray Systems, Chicago, IL, USA, 22–26 July 2018. [Google Scholar]
- Mishra, Y.N.; Kristensson, E.; Berrocal, E. Reliable LIF/Mie droplet sizing in sprays using structured laser illumination planar imaging. Opt. Express 2014, 22, 4480–4492. [Google Scholar] [CrossRef]
- Storch, M.; Mishra, Y.N.; Koegl, M.; Kristensson, E.; Will, S.; Zigan, L.; Berrocal, E. Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays. Opt. Lett. 2016, 41, 5422–5425. [Google Scholar] [CrossRef]
- Mishra, Y.N.; Kristensson, E.; Koegl, M.; Jonsson, J.; Zigan, L.; Berrocal, E. Comparison between two-phase and one-phase SLIPI for instantaneous imaging of transient sprays. Exp. Fluids 2017, 58, 110. [Google Scholar] [CrossRef]
- Durst, A.; Wensing, M.; Berrocal, E. Light sheet fluorescence microscopic imaging for the primary breakup of diesel and gasoline sprays with real-world fuels. Appl. Opt. 2018, 57, 2704–2714. [Google Scholar] [CrossRef]
- Depredurand, V.; Castanet, G.; Lemoine, F. Heat and mass transfer in evaporating droplets in interaction: Influence of the fuel. Int. J. Heat Mass Transf. 2010, 53, 3495–3502. [Google Scholar] [CrossRef]
- Depredurand, V.; Miron, P.; Labergue, A.; Wolff, M.; Castanet, G.; Lemoine, F. A temperature-sensitive tracer suitable for two-colour laser-induced fluorescence thermometry applied to evaporating fuel droplets. Meas. Sci. Technol. 2008, 19, 105403. [Google Scholar] [CrossRef]
- Zhang, Y.; Leng, J.; Hu, W. Theoretical Design of a Two-Photon Fluorescent Probe for Nitric Oxide with Enhanced Emission Induced by Photoninduced Electron Transfer. Sensors 2018, 18, 1324. [Google Scholar] [CrossRef]
- Lin, B.S.; Yang, Y.C.; Ho, C.Y.; Yang, H.Y.; Wang, H.Y. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems. Sensors 2014, 14, 2967–2980. [Google Scholar] [CrossRef]
- Greenspan, P.; Fowler, S.D. Spectrofluorometric Studies of the Lipid Probe, Nile Red. J. Lipid Res. 1985, 26, 781–789. [Google Scholar]
- Chakraborty, M.; Panda, A.K. Spectral behaviour of eosin Y in different solvents and aqueous surfactant media. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 81, 458–465. [Google Scholar] [CrossRef]
- Storch, M.; Pfaffenberger, A.; Koegl, M.; Will, S.; Zigan, L. Combustion and Sooting Behavior of Spark-Ignited Ethanol–Isooctane Sprays under Stratified Charge Conditions. Energy Fuels 2016, 30, 6080–6090. [Google Scholar] [CrossRef]
- Koegl, M.; Hofbeck, B.; Will, S.; Zigan, L. Influence of EGR and ethanol blending on soot formation in a DISI engine. Proc. Combust. Inst. 2019, 37, 4965–4972. [Google Scholar] [CrossRef]
- Storch, M.; Koegl, M.; Altenhoff, M.; Will, S.; Zigan, L. Investigation of soot formation of spark-ignited ethanol-blended gasoline sprays with single- and multi-component base fuels. Appl. Energy 2016, 181, 278–287. [Google Scholar] [CrossRef]
- Burri, J.; Crockett, R.; Hany, R.; Rentsch, D. Gasoline composition determined by 1H NMR spectroscopy. Fuel 2004, 83, 187–193. [Google Scholar] [CrossRef]
- Choi, B.C.; Choi, S.K.; Chung, S.H. Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames. Proc. Combust. Inst. 2011, 33, 609–616. [Google Scholar] [CrossRef]
- Chen, L.; Li, G.; Fang, B. Droplet evaporation characteristics of aviation kerosene surrogate fuel and butanol blends under forced convection. Int. J. Multiph. Flow 2019, 114, 229–239. [Google Scholar] [CrossRef]
- Joos, F. Technische Verbrennung; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Elfasakhany, A. Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis. Eng. Sci. Technol. Int. J. 2015, 18, 713–719. [Google Scholar] [CrossRef]
- Broustail, G.; Seers, P.; Halter, F.; Moreac, G.; Mounaim-Rousselle, C. Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends. Fuel 2011, 90, 1–6. [Google Scholar] [CrossRef]
- Liu, H.; Lee, C.-f.; Huo, M.; Yao, M. Comparison of Ethanol and Butanol as Additives in Soybean Biodiesel Using a Constant Volume Combustion Chamber. Energy Fuels 2011, 25, 1837–1846. [Google Scholar] [CrossRef]
- Riazi, M.R.; Chiaramonti, D. Biofuels Production and Processing Technology; CRC-Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Coordinating Research Council. Handbook of Aviation Fuel Properties; CRC: Atlanta, GA, USA, 1983. [Google Scholar]
- Department of Defense. Detail Specification Turbine Fuel, Aviation, Kerosene Type, JP-8 (Nato F-34), Nato F-35, and JP-8+100 (Nato F-37). Available online: https://quicksearch.dla.mil/Transient/9FA7EA4F55464FF5AA4D85B2A39A4D7C.pdf (accessed on 2 April 2019).
- Environment Canada. Available online: http://www.etc-cte.ec.gc.ca/databases/oilproperties/pdf/web_jet_a-jet_a-1.pdf (accessed on 2 April 2019).
- Gawron, B.; Białecki, T. Impact of a Jet A-1/HEFA blend on the performance and emission characteristics of a miniature turbojet engine. Int. J. Environ. Sci. Technol. 2018, 15, 1501–1508. [Google Scholar] [CrossRef]
- Groendyk, M.; Rothamer, D. Effect of increased fuel volatility on CDC operation in a light-duty CIDI engine. Fuel 2017, 194, 195–210. [Google Scholar] [CrossRef]
- Kannaiyan, K. Role of Alternative Aviation Fuels Reducing the Carbon Footprint. Available online: http://gfrc.tamu.edu/wp-content/uploads/2015/05/Kannaiyan.pdf (accessed on 2 April 2019).
- Wolters, F.; Becker, R.-G.; Schaefer, M. Impact of Alternative Fuels on Engine Performance and CO2-EMISSIONS. In Proceedings of the 28th International Congress of the Aeronautical Sciences, Brisbane, Australia, 23–28 September 2012. [Google Scholar]
- Kalathimekkad, S.; Missinne, J.; Schaubroeck, D.; Mandamparambil, R.; Van Steenberge, G. Alcohol Vapor Sensor Based on Fluorescent Dye-Doped Optical Waveguides. IEEE Sens. J. 2015, 15, 76–81. [Google Scholar] [CrossRef]
- Koban, W.; Koch, J.D.; Hanson, R.K.; Schulz, C. Absorption and fluorescence of toluene vapor at elevated temperatures. Phys. Chem. Chem. Phys. 2004, 6, 2940–2945. [Google Scholar] [CrossRef]
- Orain, M.; Baranger, P.; Ledier, C.; Apeloig, J.; Grisch, F. Fluorescence spectroscopy of kerosene vapour at high temperatures and pressures: Potential for gas turbines measurements. Appl. Phys. B 2014, 116, 729–745. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Xu, M.; Wang, J. Droplet Temperature Measurement Based on 2-Color Laser-Induced Exciplex Fluorescence. Exp. Fluids 2013, 54. [Google Scholar] [CrossRef]
- Zigan, L.; Schmitz, I.; Flügel, A.; Knorsch, T.; Wensing, M.; Leipertz, A. Effect of Fuel Properties on Spray Breakup and Evaporation Studied for a Multihole Direct Injection Spark Ignition Injector. Energy Fuels 2010, 24, 4341–4350. [Google Scholar] [CrossRef]
- Bardi, M.; Di Lella, A.; Bruneaux, G. A novel approach for quantitative measurements of preferential evaporation of fuel by means of two-tracer laser induced fluorescence. Fuel 2019, 239, 521–533. [Google Scholar] [CrossRef]
- Kranz, P.; Kaiser, S.A. LIF-based imaging of preferential evaporation of a multi-component gasoline surrogate in a direct-injection engine. Proc. Combust. Inst. 2019, 37, 1365–1372. [Google Scholar] [CrossRef]
- Bader, A.; Keller, P.; Hasse, C. The influence of non-ideal vapor–liquid equilibrium on the evaporation of ethanol/iso-octane droplets. Int. J. Heat Mass Transf. 2013, 64, 547–558. [Google Scholar] [CrossRef]
Property | Unit | isooctane | toluene | ethanol | Jet A-1 | HEFA | Farnesane |
---|---|---|---|---|---|---|---|
H/C-ratio/O/C-ratio | - | 2.25/- | 1.14/- | 3/0.5 | 1.92/- | variable | 2.13/- |
Boiling point | K | 372 | 383 | 351 | 478-573 | 478-573 | 472 |
Density @ 293 K, 0.1 MPa | g/cm³ | 0.72 | 0.74 | 0.79 | 0.79 | 0.78 (@288 K) | 0.77 |
Dynamic viscosity @ 0.1 MPa, 298 K | mPa s | 0.47 | 0.59 | 1.10 | 1.33 (@293K) | 3.90 (@253K) | 2.72 (@293K) |
Surface tension @ 293 K | N/m | 0.019 | 0.029 | 0.022 | 0.027 | - | 0.025 |
Heat of vaporization @ 293 K | kJ/kg | 297 | 364 | 904 | 300-375 | - | 219.8 |
Stoichiometric air-fuel ratio | kg/kg | 15.2 | 13.4 | 9 | ~15 | ~15.3 | 14.9 |
Lower Heating Value | MJ/kg | 44.3 | 40.6 | 26.8 | 43.45 | 43.7 | 43.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koegl, M.; Mull, C.; Baderschneider, K.; Wislicenus, J.; Will, S.; Zigan, L. Characterization of Nile Red as a Tracer for Laser-Induced Fluorescence Spectroscopy of Gasoline and Kerosene and Their Mixture with Biofuels. Sensors 2019, 19, 2822. https://doi.org/10.3390/s19122822
Koegl M, Mull C, Baderschneider K, Wislicenus J, Will S, Zigan L. Characterization of Nile Red as a Tracer for Laser-Induced Fluorescence Spectroscopy of Gasoline and Kerosene and Their Mixture with Biofuels. Sensors. 2019; 19(12):2822. https://doi.org/10.3390/s19122822
Chicago/Turabian StyleKoegl, Matthias, Christopher Mull, Kevin Baderschneider, Jan Wislicenus, Stefan Will, and Lars Zigan. 2019. "Characterization of Nile Red as a Tracer for Laser-Induced Fluorescence Spectroscopy of Gasoline and Kerosene and Their Mixture with Biofuels" Sensors 19, no. 12: 2822. https://doi.org/10.3390/s19122822
APA StyleKoegl, M., Mull, C., Baderschneider, K., Wislicenus, J., Will, S., & Zigan, L. (2019). Characterization of Nile Red as a Tracer for Laser-Induced Fluorescence Spectroscopy of Gasoline and Kerosene and Their Mixture with Biofuels. Sensors, 19(12), 2822. https://doi.org/10.3390/s19122822