Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Protocol and Procedure
2.3. Data Analysis
2.3.1. Reference Ankle Joint Power
2.3.2. Data Processing
2.3.3. Evaluation
3. Results
3.1. Intra-Subject Test Accuracy
3.2. Inter-Subject Test Accuracy
4. Discussion
5. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, X.; Chu, K.H.; Khoshnam, M.; Menon, C. A Wearable Gait Phase Detection System Based on Force Myography Techniques. Sensors 2018, 18, 1297. [Google Scholar] [CrossRef] [PubMed]
- Gage, J.R.; Deluca, P.A.; Renshaw, T.S. Gait Analysis: Principles and Applications. JBJS 1995, 77, 1607–1623. [Google Scholar] [CrossRef]
- Lapham, A.C.; Bartlett, R.M. The use of artificial intelligence in the analysis of sports performance: A review of applications in human gait analysis and future directions for sports biomechanics. J. Sports Sci. 1995, 13, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly. Wien. Klin. Wochenschr. 2017, 129, 81–95. [Google Scholar] [CrossRef]
- Baldwin, R.; Bobovych, S.; Robucci, R.; Patel, C.; Banerjee, N. Gait analysis for fall prediction using hierarchical textile-based capacitive sensor arrays. In Proceedings of the 2015 Design Automotive Testing Europe Conference Exhibition, Grenoble, France, 9 January 2015; pp. 1293–1298. [Google Scholar]
- Cimolin, V.; Galli, M. Summary measures for clinical gait analysis: A literature review. Gait Posture 2014, 39, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- McClelland, J.A.; Webster, K.E.; Feller, J.A. Gait analysis of patients following total knee replacement: A systematic review. Knee 2007, 14, 253–263. [Google Scholar] [CrossRef]
- Ornetti, P.; Maillefert, J.F.; Laroche, D.; Morisset, C.; Dougados, M.; Gossec, L. Gait analysis as a quantifiable outcome measure in hip or knee osteoarthritis: A systematic review. Jt. Bone Spine 2010, 77, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Salarian, A.; Russmann, H.; Vingerhoets, F.J.G.; Dehollain, C.; Blanc, Y.; Burkhard, P.R.; Aminian, K. Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 2004, 51, 1434–1443. [Google Scholar] [CrossRef]
- Zelik, K.E.; Kuo, A.D. Human walking isn’t all hard work: Evidence of soft tissue contributions to energy dissipation and return. J. Exp. Biol. 2010, 213, 4257–4264. [Google Scholar] [CrossRef]
- Lipfert, S.W.; Günther, M.; Renjewski, D.; Seyfarth, A. Impulsive ankle push-off powers leg swing in human walking. J. Exp. Biol. 2014, 217, 1218–1228. [Google Scholar] [CrossRef]
- JudgeRoy, J.O.; Davis, B., III; Õunpuu, S. Step length reductions in advanced age: The role of ankle and hip kinetics. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1996, 51, M303–M312. [Google Scholar] [CrossRef] [PubMed]
- Valderrabano, V.; Nigg, B.M.; von Tscharner, V.; Stefanyshyn, D.J.; Goepfert, B.; Hintermann, B. Gait analysis in ankle osteoarthritis and total ankle replacement. Clin. Biomech. 2007, 22, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Olney, S.J.; Griffin, M.P.; Monga, T.N.; McBride, I.D. Work and power in gait of stroke patients. Arch. Phys. Med. Rehabil. 1991, 72, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Olney, S.J.; Richards, C. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture 1996, 4, 136–148. [Google Scholar] [CrossRef]
- Malcolm, P.; Quesada, R.E.; Caputo, J.M.; Collins, S.H. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking. J. Neuroeng. Rehabil. 2015, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Wouda, F.J.; Giuberti, M.; Bellusci, G.; Maartens, E.; Reenalda, J.; van Beijnum, B.J.F.; Veltink, P.H. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors. Front. Physiol. 2018, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Bogey, R.A.; Gitter, A.J.; Barnes, L.A. Determination of ankle muscle power in normal gait using an EMG-to-force processing approach. J. Electromyogr. Kinesiol. 2010, 20, 46–54. [Google Scholar] [CrossRef]
- Weber, D. Differences in physical aging measured by walking speed: Evidence from the English Longitudinal Study of Ageing. BMC Geriatr. 2016, 16, 31. [Google Scholar] [CrossRef]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 2012, 39, 7420–7431. [Google Scholar] [CrossRef]
- Sadarangani, G.P.; Menon, C. A preliminary investigation on the utility of temporal features of Force Myography in the two-class problem of grasp vs. no-grasp in the presence of upper-extremity movements. Biomed. Eng. Online 2017, 16, 59. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.E.O. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by random forest. Nucleic Acids Res. 2013, 5, 983–999. [Google Scholar] [CrossRef]
Speeds (m/s) | |||||
---|---|---|---|---|---|
Accuracy | 0.4 | 0.7 | 1.0 | 1.3 | 1.7 |
Correlation coefficient (R) | 0.94 | 0.97 | 0.98 | 0.98 | 0.98 |
Root mean squared error (RMSE) | 0.03 | 0.04 | 0.06 | 0.08 | 0.10 |
Normalized root mean squared error (NRMSE) | 0.49% | 0.77% | 1.00% | 1.37% | 1.71% |
Speeds (m/s) | |||||
---|---|---|---|---|---|
0.4 | 0.7 | 1.0 | 1.3 | 1.7 | |
True Peak Power (w/kg) | 0.34 | 0.91 | 1.71 | 2.52 | 3.04 |
Power Range (w/kg) | 0.67 | 1.55 | 2.55 | 3.52 | 3.97 |
Predicted Peak Power (w/kg) (Intra-subject) | 0.34 | 0.90 | 1.65 | 2.53 | 3.03 |
Predicted Peak Power (w/kg) (Inter-subject) | 0.42 | 1.00 | 1.90 | 2.70 | 3.17 |
True Peak Occurrence | 60.7% | 60.3% | 58.0% | 56.6% | 54.8% |
Predicted Peak Occurrence (Intra-subject) | 61.3% | 60.4% | 58.1% | 57.1% | 55.2% |
Predicted Peak Occurrence (Inter-subject) | 62.0% | 60.5% | 58.0% | 56.8% | 54.8% |
Speeds (m/s) | |||||
---|---|---|---|---|---|
Accuracy | 0.4 | 0.7 | 1.0 | 1.3 | 1.7 |
Correlation coefficient (R) | 0.84 | 0.87 | 0.91 | 0.92 | 0.93 |
Root mean squared error (RMSE) | 0.06 | 0.11 | 0.14 | 0.17 | 0.21 |
Normalized root mean squared error (NRMSE) | 1.0% | 1.8% | 2.5% | 3.0% | 3.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Gholami, M.; Khoshnam, M.; Eng, J.J.; Menon, C. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors. Sensors 2019, 19, 2796. https://doi.org/10.3390/s19122796
Jiang X, Gholami M, Khoshnam M, Eng JJ, Menon C. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors. Sensors. 2019; 19(12):2796. https://doi.org/10.3390/s19122796
Chicago/Turabian StyleJiang, Xianta, Mohsen Gholami, Mahta Khoshnam, Janice J. Eng, and Carlo Menon. 2019. "Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors" Sensors 19, no. 12: 2796. https://doi.org/10.3390/s19122796
APA StyleJiang, X., Gholami, M., Khoshnam, M., Eng, J. J., & Menon, C. (2019). Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors. Sensors, 19(12), 2796. https://doi.org/10.3390/s19122796