# Deformation Activity Analysis of a Ground Fissure Based on Instantaneous Total Energy

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Study Site

## 3. SAA Sensor Layout

## 4. Methodology

#### 4.1. Signal Denoising Using the ESMD Method and Spearman’s Rho

#### 4.2. Instantaneous Total Energy of the Activity Analysis

## 5. Results and Discussion

#### 5.1. Results of Variations in the Ground Fissure

#### 5.2. Signal Denoising

#### 5.3. Analysis of Ground Fissure Activity

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Lee, C.F.; Zhang, J.M.; Zhang, Y.X. Evolution and origin of the ground fissures in Xian, China. Eng. Geol.
**1996**, 43, 45–55. [Google Scholar] [CrossRef] - Peng, J.B.; Sun, X.H.; Wang, W. Characteristics of land subsidence, earth fissures and related disaster chain effects with respect to urban hazards in Xi’an, China. Environ. Earth Sci.
**2016**, 75, 1190. [Google Scholar] [CrossRef] - Ge, Y.; Tang, H.; Gong, X. Deformation Monitoring of Earth Fissure Hazards Using Terrestrial Laser Scanning. Sensors
**2019**, 19, 1463. [Google Scholar] [CrossRef] [PubMed] - Xu, J.; Meng, L.; An, H. The bending mechanism of Anping ground fissure in the Hebei Plain, North China. Environ. Earth Sci.
**2015**, 74, 6859–6870. [Google Scholar] [CrossRef] - Qu, F.; Zhang, Q.; Lu, Z.; Zhao, C.; Yang, C.; Zhang, J. Land subsidence and ground fissures in Xi’an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sens. Environ.
**2014**, 155, 366–376. [Google Scholar] [CrossRef] - Desir, G.; Gutiérrez, F.; Merino, J.; Carbonel, D.; Benito-Calvo, A.; Guerrero, J.; Fabregat, I. Rapid subsidence in damaging sinkholes: Measurement by high-precision leveling and the role of salt dissolution. Geomorphology
**2018**, 303, 393–409. [Google Scholar] [CrossRef] - Psimoulis, P.; Ghilardi, M.; Fouache, E.; Stiros, S. Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data. Eng. Geol.
**2007**, 90, 55–70. [Google Scholar] [CrossRef] - Zhao, C.Y.; Zhang, Q.; Ding, X.L.; Lu, Z.; Yang, C.S.; Qi, X.M. Monitoring of land subsidence and ground fissures in Xian, China 2005–2006: Mapped by SAR interferometry. Environ. Geol.
**2009**, 58, 1533–1540. [Google Scholar] [CrossRef] - Lee, J.; Snyder, P.K.; Fisher, P.F. Modeling the effect of data errors on feature extraction from digital elevation models. Photogramm. Eng. Remote Sens.
**1992**, 58, 1461. [Google Scholar] - Bonforte, A.; Guglielmino, F.; Palano, M.; Puglisi, G. A syn-eruptive ground deformation episode measured by GPS, during the 2001 eruption on the upper southern flank of Mt Etna. Bull. Volcanol.
**2004**, 66, 336–341. [Google Scholar] [CrossRef] - Gili, J.A.; Corominas, J.; Rius, J. Using Global Positioning System techniques in landslide monitoring. Eng. Geol.
**2000**, 55, 167–192. [Google Scholar] [CrossRef] - Qu, W.; Lu, Z.; Zhang, Q. Kinematic model of crustal deformation of Fenwei basin, China based on GPS observations. J. Geodyn.
**2014**, 75, 1–8. [Google Scholar] [CrossRef] - Massonnet, D.; Rossi, M.; Carmona, C. The displacement field of the Landers earthquake mapped by radar interferometry. Nature
**1993**, 364, 138–142. [Google Scholar] [CrossRef] - Lu, Z.; Fielding, E.; Patrick, M.R. Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: The 1997 eruption of Okmok volcano, Alaska. IEEE Trans. Geosci. Remote Sens.
**2003**, 41, 1428–1436. [Google Scholar] - Brunori, C.; Bignami, C.; Albano, M.; Zucca, F.; Samsonov, S.; Groppelli, G.; Stramondo, S. Land subsidence, ground fissures and buried faults: InSAR monitoring of Ciudad Guzmán (Jalisco, Mexico). Remote Sens.
**2015**, 7, 8610–8630. [Google Scholar] [CrossRef] - Yang, C.; Lu, Z.; Zhang, Q.; Liu, R.; Ji, L.; Zhao, C. Ground deformation and fissure activity in Datong basin, China 2007–2010 revealed by multi-track InSAR. Geomat. Nat. Haz. Risk
**2019**, 10, 465–482. [Google Scholar] [CrossRef] - Bonforte, A.; Ferretti, A.; Prati, C. Calibration of atmospheric effects on SAR interferograms by GPS and local atmosphere models: First results. J. Atmos. Sol.-Terr. Phys.
**2001**, 63, 1343–1357. [Google Scholar] [CrossRef] - Suo, W.; Lu, Y.; Shi, B.; Zhu, H.; Wei, G.; Jiang, H. Evelopment and application of a fixed-point fiber-optic sensing cable for ground fissure monitoring. J. Civ. Struct. Health Monit.
**2016**, 6, 715–724. [Google Scholar] [CrossRef] - Ye, S.; Xue, Y.; Wu, J.; Yan, X.; Yu, J. Progression and mitigation of land subsidence in China. Hydrogeol. J.
**2016**, 24, 685–693. [Google Scholar] [CrossRef] - Zhu, H.H.; Shi, B.; Zhang, C.C. FBG-based monitoring of geohazards: Current status and trends. Sensors
**2017**, 17, 452. [Google Scholar] [CrossRef] - Amoruso, A.; Crescentini, L.; Scarpa, R.; Bilham, R.; Linde, A.T.; Sacks, I.S. Abrupt magma chamber contraction and microseismicity at Campi Flegrei, Italy: Cause and effect determined from strainmeters and tiltmeters. J. Geophys. Res.
**2015**, 120, 5467–5478. [Google Scholar] [CrossRef] [Green Version] - Bradley, B.; Prado, G.R. The Use of Shape Accel Array for Monitoring Utilities during Urban Tunnel Drives. In Crossrail Project: Infrastructure Design and Construction; ICE Publishing: London, UK, 2015; pp. 221–237. [Google Scholar]
- Uhlemann, S.; Smith, A.; Chambers, J. Assessment of ground-based monitoring techniques applied to landslide investigations. Geomorphology
**2016**, 253, 438–451. [Google Scholar] [CrossRef] - Buchli, T.; Laue, J.; Springman, S.M. Amendments to interpretations of SAAF inclinometer data from the Furggwanghorn rock glacier, Turtmann Valley, Switzerland: Results from 2010 to 2012. Vadose Zone J.
**2016**, 15. [Google Scholar] [CrossRef] - Abdoun, T.; Bennett, V.; Danisch, L. Real-Time Construction Monitoring with a Wireless Shape-Acceleration Array System. Geotech. Spec. Publ.
**2008**, 179, 533–540. [Google Scholar] - Macciotta, R.; Hendry, M.; Martin, C.D. Developing an early warning system for a very slow landslide based on displacement monitoring. Nat. Hazard
**2015**, 81, 1–21. [Google Scholar] [CrossRef] - Dijkstra, T.A.; Dixon, N. Climate change and slope stability in the UK: Challenges and approaches. Q. J. Eng. Geol. Hydrogeol.
**2010**, 43, 371–385. [Google Scholar] [CrossRef] - Huntley, D.; Bobrowsky, P.; Qing, Z.; Sladen, W.; Bunce, C.; Edwards, T.; Choi, E. Fiber optic strain monitoring and evaluation of a slow-moving landslide near Ashcroft, British Columbia, Canada. In Landslide Science for a Safer Geoenvironment; Springer International Publishing: New York, NY, USA, 2014; pp. 415–421. [Google Scholar]
- Journault, J.; Macciotta, R.; Hendry, M.T.; Charbonneau, F.; Huntley, D.; Bobrowsky, P.T. Measuring displacements of the Thompson River valley landslides, south of Ashcroft, BC, Canada, using satellite InSAR. Landslides
**2018**, 15, 621–636. [Google Scholar] [CrossRef] - Chang, P.Y.; Huang, W.J.; Chen, C.C.; Hsu, H.L.; Yen, I.C.; Ho, G.R.; Chen, P.T. Probing the frontal deformation zone of the Chihshang Fault with boreholes and high-resolution electrical resistivity imaging methods: A case study at the Dapo site in eastern Taiwan. J. Appl. Geophys.
**2018**, 153, 127–135. [Google Scholar] [CrossRef] - Yang, C.; Zhang, Q.; Zhao, C.; Ji, L. Small Baseline Bubset InSAR Technology Used in Datong Basin Ground Subsidence, Fissure and Fault Zone Monitoring. Geomat. Inf. Sci. Wuhan Univ.
**2014**, 39, 945–950. (In Chinese) [Google Scholar] - Cheng, G.; Wang, H.; Luo, Y. Study of the deformation mechanism of the Gaoliying ground fissure. Proc. IAHS
**2015**, 372, 231–234. [Google Scholar] [CrossRef] [Green Version] - Huang, N.E.; Shen, Z.; Long, S.R. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. A
**1998**, 454, 903–995. [Google Scholar] [CrossRef] - Liu, X.; Lu, Z.; Yang, W. Dynamic Monitoring and Vibration Analysis of Ancient Bridges by Ground-Based Microwave Interferometry and the ESMD Method. Remote Sens.
**2018**, 10, 770. [Google Scholar] [CrossRef] - Kopsinis, Y.; Mclaughlin, S. Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE Trans. Signal Process.
**2009**, 57, 1351–1362. [Google Scholar] [CrossRef] - Gan, Y.; Sui, L.; Wu, J. An EMD threshold de-noising method for inertial sensors. Measurement
**2014**, 49, 34–41. [Google Scholar] [CrossRef] - Wang, J.L.; Li, Z.J. Extreme-point symmetric mode decomposition method for data analysis. Adv. Adapt. Data Anal.
**2013**, 5, 1350015. [Google Scholar] [CrossRef] - Schreier, P. A unifying discussion of correlation analysis for complex random vectors. IEEE Trans. Signal Process.
**2008**, 56, 1327–1336. [Google Scholar] [CrossRef] - Xu, W.C. A comparative analysis of Spearman’s rho and Kendall’s tau in normal and contaminated normal models. Signal Process.
**2013**, 93, 261–276. [Google Scholar] [CrossRef] - Duan, Y.B.; Song, C.T. Relevant modes selection method based on Spearman correlation coefficient for laser signal denoising using empirical mode decomposition. Opt. Rev.
**2016**, 23, 936–949. [Google Scholar] [CrossRef] - Li, J.W. A UV-visible absorption spectrum denoising method based on EEMD and an improved universal threshold filter. RSC Adv.
**2018**, 8, 8558–8568. [Google Scholar] [CrossRef] [Green Version] - Huang, N.E.; Chen, X.; Lo, M.T.; Wu, Z. On Hilbert spectral representation: A true time-frequency representation for nonlinear and nonstationary data. Adv. Adapt. Data Anal.
**2011**, 3, 63–93. [Google Scholar] [CrossRef] - Si, L.; Wang, Q. Rapid multi-damage identification for health monitoring of laminated composites using piezoelectric wafer sensor arrays. Sensors
**2016**, 16, 638. [Google Scholar] [CrossRef] [PubMed] - Liu, X.; Tang, Y.; Lu, Z.; Huang, H.; Tong, X.; Ma, J. ESMD-based stability analysis in the progressive collapse of a building model: A case study of a reinforced concrete frame-shear wall model. Measurement
**2018**, 120, 34–42. [Google Scholar] [CrossRef]

**Figure 1.**Location of the study site, (

**a**) the study site in China, (

**b**) the study site in Shunyi District of Beijing, (

**c**) two expressways, a canal, three pumping wells and Gao Li Ying crack zone around the study site, (

**d**) distances between two expressways and the study site.

**Figure 4.**Charts of the SAA installation process. (

**a**) Excavated foundation pit; (

**b**) Schematic diagram of fixed protection for SAA sensors; (

**c**) Vertically embedded SAA sensor in the ground fissure; (

**d**) Horizontally embedded SAA sensor in the ground fissure; (

**e**) Buried polyvinyl chloride (PVC) pipes for data connection protection; (

**f**) Solar energy storage devices and data acquisition devices.

**Figure 6.**Curves of cumulative horizontal displacement in the X and Y directions of the 4 m-long SAA. (

**a**) Curves of cumulative horizontal displacement in the X direction of the 4 m-long SAA; (

**b**) Curves of cumulative horizontal displacement in the Y direction of the 4 m-long SAA.

**Figure 7.**The cumulative horizontal displacement curve of the SAA in the Z direction of the 8 m-long SAA.

**Figure 8.**Decomposed intrinsic mode functions (IMFs) using the ESMD method for the time-series displacement in the X direction of the 4th node of the 4 m-long SAA.

**Figure 11.**Instantaneous total energy of the 4th and 5th nodes in the X and Y directions of the 4 m-long SAA. (

**a**) X direction of the 4th node; (

**b**) X direction of the 5th node; (

**c**) Y direction of the 4th node; (

**d**) Y direction of the 5th node.

**Figure 12.**Instantaneous total energy in the Z direction of the 8 m-long SAA. (

**a**) 1st node, (

**b**) 5th node, (

**c**) 12th node, and (

**d**) 16th node.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, X.; Su, S.; Ma, J.; Yang, W.
Deformation Activity Analysis of a Ground Fissure Based on Instantaneous Total Energy. *Sensors* **2019**, *19*, 2607.
https://doi.org/10.3390/s19112607

**AMA Style**

Liu X, Su S, Ma J, Yang W.
Deformation Activity Analysis of a Ground Fissure Based on Instantaneous Total Energy. *Sensors*. 2019; 19(11):2607.
https://doi.org/10.3390/s19112607

**Chicago/Turabian Style**

Liu, Xianglei, Shan Su, Jing Ma, and Wanxin Yang.
2019. "Deformation Activity Analysis of a Ground Fissure Based on Instantaneous Total Energy" *Sensors* 19, no. 11: 2607.
https://doi.org/10.3390/s19112607