Magnetostrictive Sensor for Blockage Detection in Pipes Subjected to High Temperatures
Abstract
1. Introduction
2. Magnetostrictive Sensors
2.1. Magnetostrictive Transducer
2.2. Characterization of the Magnetostrictive Transducer
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Behar, O. Solar thermal power plants—A review of configurations and performance comparison. Renew. Sustain. Energy Rev. 2018, 92, 608–627. [Google Scholar] [CrossRef]
- Liu, G.; Liu, J.; Jiaqiang, E.; Li, Y.; Zhang, Z.; Chen, J.; Zhao, X.; Hu, W. Effects of different sizes and dispatch strategies of thermal energy storage on solar energy usage ability of solar thermal power plant. Appl. Therm. Eng. 2019, 156, 14–22. [Google Scholar] [CrossRef]
- Sioshansi, R.; Denholm, P. The Value of Concentrating Solar Power and Thermal Energy Storage. IEEE Trans. Sustain. Energy 2010, 1, 173–183. [Google Scholar] [CrossRef]
- Peiró, G.; Prieto, C.; Gasia, J.; Jové, A.; Miró, L.; Cabeza, L.F. Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: Lessons learnt and recommendations for its design, start-up and operation. Renew. Energy 2018, 121, 236–248. [Google Scholar] [CrossRef]
- Bauer, T.; Laing, D.; Tamme, R. Overview of PCMs for concentrated solar power in the temperature range 200 to 350 °C. Adv. Sci. Technol. 2010, 74, 272–277. [Google Scholar] [CrossRef]
- Laing, D.; Bahl, C.; Bauer, T.; Fiss, M.; Breidenbach, N.; Hempel, M. High- Temperature Solid-Media Thermal Energy Storage for Solar Thermal Power Plants. Proc. IEEE 2012, 100, 516–524. [Google Scholar] [CrossRef]
- Nils, B.; Claudia, M.; Henning, J.; Thomas, B. Overview of Novel Concepts and the DLR Test Facility TESIS. In Proceedings of the 10th International Renewable Energy Storage Conference, IRES 2016, Düsseldorf, Germany, 15–17 March 2016; Volume 99, pp. 120–129. [Google Scholar]
- González-Roubaud, E.; Pérez-Osorio, D.; Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renew. Sustain. Energy Rev. 2017, 80, 133–148. [Google Scholar] [CrossRef]
- Niu, X.; Duan, W.; Chen, H.-P.; Marques, H.R. Excitation and propagation of torsional T(0,1) mode for guided wave testing of pipeline integrity. Measurement 2019, 131, 341–348. [Google Scholar] [CrossRef]
- Andrés-Mayor, H.; Prieto, M.J.; Villegas, P.; Nuño, F.; Martín-Ramos, J.A.; Pernía, A. Development of Magnetostrictive Transducer Prototype for Blockage Detection on Molten Salt Pipes. Energies 2018, 11, 587. [Google Scholar] [CrossRef]
- Bertoncini, F.; De Lorenzo, G.; Giunta, G.; Raugi, M.; Turcu, F. Effect of Attenuation on Inspection Range and Sensitivity in Long-Range Guided Wave NDT of Coated and Buried Pipes. Net E J. 2010, 1–12, 9985. [Google Scholar]
- Rose, J.L.; Ditri, J.J.; Pilarski, A.; Rajana, K.M.; Carr, F.T. A guided wave inspection technique for nuclear steam generator tubing. NDT E Int. 1993, 27, 307–310. [Google Scholar] [CrossRef]
- Ditri, J.J.; Rose, J.L. Excitation of guided elastic wave modes in hollow cylinders by applied surface tractions. J. Appl. Phys. 1992, 72, 2589–2597. [Google Scholar] [CrossRef]
- Ma, J.; Lowe, M.J.S.; Simonetti, F. Feasibility study of blockage detection inside pipes using guided ultrasonic waves. Meas. Sci. Technol. 2007, 18, 2629–2641. [Google Scholar] [CrossRef]
- Charchuk, R.; Werstiuk, C.; Evans, M.; Sjerve, E. High Temperature Guided Wave Pipe Inspection. In Proceedings of the 4th International CANDU In-service Inspection Workshop and NDT in Canada 2012 Conference, Toronto, ON, Canada, 18–21 June 2012. [Google Scholar]
- Hirao, M.; Ogi, H. EMATs for Science and Industry: Noncontacting Ultrasonic Measurements; Springer Science & Business Media: Heidelberg, Germany, 2013. [Google Scholar]
- Williams, R. Theory of Magnetostrictive Delay Lines for Pulse and Continuous Wave Transmission. IEEE Trans. IRE Prof. Gr. Ultrason. Eng. 1959, 6, 16–32. [Google Scholar] [CrossRef]
- Francesco, B.; Marco, R.; Florin, T. Application of Ultrasonic Guided Waves in the Field of Cryogenic Fluids; ECNDT: Moscow, Russia, 2010. [Google Scholar]
- Kwun, H. Method and Apparatus Generating and Detecting Torsional Wave Inspection of Pipes or Tubes. U.S. Patent US 6429560 B1, 6 August 2002. [Google Scholar]
- Kim, Y.Y.; Kwon, Y.E. Review of magnetostrictive patch transducers and applications in ultrasonic nondestructive testing of waveguides. Ultrasonics 2015, 62, 3–19. [Google Scholar] [CrossRef]
- Bertoncini, F.; Giunta, G.; Raugi, M.; Turcu, F. Overview and Experimental Evaluation of Magnetostrictive Transducers for Guided Wave Inspection. NDT E J. 2012, 17, 13162. [Google Scholar]
- Park, C.; Han, S.; Cho, S.; Kim, Y. The generation of torsional waves and the pipe diagnosis using magnetostrictive transducers. Proc. KNV 2004, 14, 144–149. [Google Scholar] [CrossRef]
- Park, C.I.; Cho, S.H.; Han, S.W.; Kim, Y.Y. Efficient generation and measurement of uided torsional waves using magnetostrictive nickel patches. In Proceedings of the EEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; Volume 2, pp. 1290–1293. [Google Scholar]
- Vinogradov, S.A. Method and System for the Generation of torsional Guided Waves Using A Ferromagnetic Strip Sensor. U.S. Patent US7573261B, 11 August 2009. [Google Scholar]
- Kim, Y.-G.; Moon, H.-S.; Park, K.-J.; Lee, J.-K. Generating and detecting torsional guided waves using magnetostrictive sensors of crossed coils. NDT E Int. 2011, 44, 145–151. [Google Scholar] [CrossRef]
- Clough, M.; Fleming, M.; Dixon, S. Circumferential guided wave EMAT system for pipeline screening using shear horizontal ultrasound. NDT E Int. 2017, 86, 20–27. [Google Scholar] [CrossRef]
- Starman, S.; Matz, V.; Kreidl, M.; Smid, R. Comparison of De-noising Methods Used for EMAT Signals. NDT Weld. Bull. 2006, 2006, 43. [Google Scholar]
- Cho, S.H.; Park, C.I.; Kim, Y.Y. Effects of the orientation of magnetostrictive nickel strip on torsional wave transduction efficiency of cylindrical waveguides. Appl. Phys. Lett. 2005, 86, 244101. [Google Scholar] [CrossRef]
- Cegla, J.I. EMAT phased array: A feasibility study of surface crack detection. Ultrasonics 2017, 78, 1–9. [Google Scholar]
- Thring, C.B.; Fan, Y.; Edwards, R.S. Focused Rayleigh wave EMAT for characterisation of surface-breaking defects. NDT E Int. 2016, 81, 20–27. [Google Scholar] [CrossRef]
- Heinlein, S.; Cawley, P.; Vogt, T.K. Reflection of torsional T(0,1) guided waves from defects in pipe bends. NDT E Int. 2018, 93, 57–63. [Google Scholar] [CrossRef]
- Xu, C.; Yang, Z.; Tian, S.; Chen, X. Lamb wave inspection for composite laminates using a combined method of sparse reconstruction and delay-and-sum. Compos. Struct. 2019, 233, 110973. [Google Scholar] [CrossRef]
- Herdovics, B.; Cegla, F. Compensation of phase response changes in ultrasonic transducers caused by temperature variations. Struct. Health Monit. 2019, 18, 508–523. [Google Scholar] [CrossRef]
Thermocouple | Salt Temperature (°C) | External Temperature (°C) |
---|---|---|
TT-13WSX30CT001-JTC1 position A | 312,25 | |
Thermocouple position B | 294 | 286 |
Thermocouple position C | 290 | 282 |
Thermocouple position D | 285 | 277 |
Thermocouple position E | 281 | 273 |
HTF | Minimum Temperature (°C) | Maximum Temperature (°C) |
---|---|---|
Nitrate salts | 265 | 565 |
Sodium liquid | 270 | 530 |
Carbonate salts | 450 | 700 |
Material | ∆L/L |
---|---|
Nickel | −33 × 10−6 |
Cobalt | 60 × 10−6 |
45 Permalloy | 27 × 10−6 |
Permendur-2 V | 70 × 10−6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pernía, A.M.; Mayor, H.A.; Prieto, M.J.; Villegas, P.J.; Nuño, F.; Martín-Ramos, J.A. Magnetostrictive Sensor for Blockage Detection in Pipes Subjected to High Temperatures. Sensors 2019, 19, 2382. https://doi.org/10.3390/s19102382
Pernía AM, Mayor HA, Prieto MJ, Villegas PJ, Nuño F, Martín-Ramos JA. Magnetostrictive Sensor for Blockage Detection in Pipes Subjected to High Temperatures. Sensors. 2019; 19(10):2382. https://doi.org/10.3390/s19102382
Chicago/Turabian StylePernía, Alberto M., Héctor Andrés Mayor, Miguel J. Prieto, Pedro J. Villegas, Fernando Nuño, and Juan A. Martín-Ramos. 2019. "Magnetostrictive Sensor for Blockage Detection in Pipes Subjected to High Temperatures" Sensors 19, no. 10: 2382. https://doi.org/10.3390/s19102382
APA StylePernía, A. M., Mayor, H. A., Prieto, M. J., Villegas, P. J., Nuño, F., & Martín-Ramos, J. A. (2019). Magnetostrictive Sensor for Blockage Detection in Pipes Subjected to High Temperatures. Sensors, 19(10), 2382. https://doi.org/10.3390/s19102382