Humidity Sensing Behavior of Endohedral Li-Doped and Undoped SWCNT/SDBS Composite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. CNT Fabrication
2.2. Film Preparation
2.3. Material Characterization
3. Results and Discussion
3.1. Raman Spectroscopy
3.2. Electron Microscopy
3.3. Electrical Measurements
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuang, Q.; Lao, C.; Wang, Z.L.; Xie, Z.; Zheng, L. High-sensitivity humidity sensorbased on a single SnO2 nanowire. J. Am. Chem. Soc 2007, 129, 6070–6071. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Peng, X.; Feng, F.; Sheng, Y.; Zhang, J. Study of humidity sensors basedon nanostructured carbon films produced by physical vapor deposition. Sens. Actuators B Chem. 2013, 178, 508–513. [Google Scholar] [CrossRef]
- Mogera, U.; Sagade, A.A.; George, S.J.; Kulkarni, G.U. Ultrafast response humiditysensor using supramolecular nanofibre and its application in monitoring breathhumidity and flow. Sci. Rep. 2014, 44, 4103. [Google Scholar] [CrossRef]
- Hong, H.P.; Jung, K.H.; Kim, J.H.; Kwon, K.H.; Lee, C.J.; Yun, K.N.; Min, N.K. Percolatedpore networks of oxygen plasma-activated multi-walled carbon nanotubes forfast response, high sensitivity capacitive humidity sensors. Nanotechnology 2013, 24, 085501. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Castro, M.; Feller, J.F. Tailoring the chemo-resistive response ofself-assembled polysaccharide-CNT sensors by chain conformation at tunneljunctions. Carbon 2012, 50, 3627–3634. [Google Scholar] [CrossRef]
- Smith, A.D.; Elgammal, K.; Niklaus, F.; Delin, A.; Fischer, A.; Vaziri, S.; Forsberg, F.; Råsander, M.; Hugosson, H.W.; Bergqvist, L.; et al. Resistive Graphene Humidity Sensors with Rapid and Direct Electrical Readout. Nanoscale 2015, 7, 19099–19109. [Google Scholar] [CrossRef]
- Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhänen, T. Ultrafast Graphene Oxide Humidity Sensors. ACS Nano 2013, 7, 11166–11173. [Google Scholar] [CrossRef]
- Gan, A.X.; Zhao, A.C.; Yuan, A.Q.; Fang, A.L.; Li, A.Y.; Yin, A.J.; Ma, A.X.; Zhao, A.J.T. High performance graphene oxide-based humidity sensor integrated on a photonic crystal cavity. Appl. Phys. Lett. 2017, 110, 151107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Huang, J.; Yuan, Q.; Dong, B. Intercalated graphitic carbon nitride: A fascinating two-dimensional nanomaterial for an ultra-sensitive humiditynanosensor. Nanoscale 2014, 6, 9250–9256. [Google Scholar] [CrossRef]
- Liang, F.; Luo, L.B.; Tsang, C.K.; Zheng, L.; Cheng, H.; Li, Y.Y. TiO2 nanotube-basedfield effect transistors and their application as humidity sensors. Mater. Res. Bull. 2012, 47, 54–58. [Google Scholar] [CrossRef]
- Sun, A.; Li, Z.; Wei, T.; Li, Y.; Cui, P. Highly sensitive humidity sensor at low humiditybased on the quaternized polypyrrole composite film. Sens. Actuators B Chem. 2009, 142, 197–203. [Google Scholar] [CrossRef]
- Benchirouf, A.; Palaniyappan, S.; Ramalingame, R.; Raghunandan, P.; Jagemann, T.; Müller, C.; Hietschold, M.; Kanoun, O. Electrical properties of multi-walled carbon nanotubes/PEDOT:PSS nanocomposites thin films under temperature and humidity effects. Sens. Actuators B Chem. 2016, 224, 344–350. [Google Scholar] [CrossRef]
- Eder, D. Carbon Nanotube-Inorganic Hybrids. Chem. Rev. 2010, 110, 1348–1385. [Google Scholar] [CrossRef] [PubMed]
- Varghese, O.K.; Kichambre, P.D.; Gong, D.; Ong, K.G.; Dickey, E.C.; Grimes, C.A. Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators B Chem. 2001, 81, 32–41. [Google Scholar] [CrossRef]
- Ren, Z.F.; Huang, Z.P.; Xu, J.W.; Wang, J.H.; Bush, P.; Siegal, M.P.; Provencio, P.N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998, 282, 1105–1107. [Google Scholar] [CrossRef]
- Krstic, V.; Duesberg, G.S.; Muster, J.; Burghard, M.; Roth, S. Langmuir-Blodgett Films of Matrix-Diluted Single-Walled Carbon Nanotubes. Chem. Mater. 1998, 10, 2338–2340. [Google Scholar] [CrossRef]
- Paloniemi, H.; Lukkarinen, M.; Ääritalo, T.; Areva, S.; Leiro, J.; Heinonen, M.; Haapakka, K.; Lukkari, J. Layer-by-Layer Electrostatic Self-Assembly of Single-Wall Carbon Nanotube Polyelectrolytes. Langmuir 2006, 22, 74–83. [Google Scholar] [CrossRef]
- Jang, E.Y.; Kang, T.J.; Im, H.W.; Kim, D.W.; Kim, Y.H. Single-Walled Carbon-Nanotube Networks on Large-Area Glass Substrate by the Dip-Coating Method. Small 2008, 4, 2255–2261. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Cho, J.; Roether, J.A.; Thomas, B.J.C.; Minay, E.J.; Shaffer, M.S.P. Electrophoretic deposition of carbon nanotubes. Carbon 2006, 44, 3149–3160. [Google Scholar] [CrossRef]
- Feng, Y.; Xie, L.; Mäntysalo, M.; Chen, Q.; Zheng, L.R. Electrical and humidity-sensing characterization of inkjet-printed multi-walled carbon nanotubes for smart packaging. In Proceedings of the IEEE Sensor Conference, Baltimore, MD, USA, 3–6 November 2013; pp. 717–720. [Google Scholar] [CrossRef]
- Kanoun, O.; Müller, C.; Benchirouf, A.; Sanli, A.; Dinh, T.; Al-Hamry, A.; Bu, L.; Gerlach, C.; Bouhamed, A. Flexible Carbon Nanotube Films for High Performance Strain Sensors. Sensors 2014, 14, 10042–10071. [Google Scholar] [CrossRef] [Green Version]
- Zahab, A.; Spina, L.; Poncharal, P.; Marlière, C. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Phys. Rev. B 2000, 62, 10000. [Google Scholar] [CrossRef]
- Cantalini, C.; Valentini, L.; Armentano, I.; Lozzi, L.; Kenny, J.M.; Santucci, S. Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD. Sens. Actuators B Chem. 2003, 95, 195–202. [Google Scholar] [CrossRef]
- Na, P.S.; Kim, H.; So, H.M.; Kong, K.J.; Chang, H.; Ryu, B.H.; Choi, Y.; Lee, J.O.; Kim, B.K.; Kim, J.J.; et al. Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors. Appl. Phys. Lett. 2005, 87, 093101. [Google Scholar] [CrossRef]
- Rinkiö, M.; Zavodchikova, M.Y.; Törmä, P.; Johansson, A. Effect of humidity on the hysteresis of single walled carbon nanotube field-effect transistors. Phys. Status Solidi B 2008, 245, 2315–2318. [Google Scholar] [CrossRef]
- Evans, G.P.; Buckley, D.J.; Skipper, N.T.; Parkin, I.P. Switchable changes in the conductance of single-walled carbon nanotube networks on exposure to water vapour. Nanoscale 2017, 9, 11279–11287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, M.; Fujii, S.; Tanaka, T.; Kataura, H. Effects of Surfactants on the Electronic Transport Properties of Thin-Film Transistors of Single-Wall Carbon Nanotubes. J. Phys. Chem. C 2013, 117, 11744–11749. [Google Scholar] [CrossRef]
- Geng, H.Z.; Lee, D.S.; Kim, K.K.; Han, G.H.; Park, H.K.; Lee, Y.H. Absorption spectroscopy of surfactant-dispersed carbon nanotube film: Modulation of electronic structures. Chem. Phys. Lett. 2008, 455, 275–278. [Google Scholar] [CrossRef]
- Tittmann-Otto, J.; Hermann, S.; Kalbacova, J.; Hartmann, M.; Toader, M.; Rodriguez, R.D.; Schulz, S.E.; Zahn, D.R.T.; Gessner, T. Effect of cleaning procedures on the electrical properties of carbon nanotube transistors-statistical study. J. Appl. Phys. 2016, 119, 124509. [Google Scholar] [CrossRef]
- Sanli, A.; Jayaraman, V.; Benchirouf, A.; Müller, C.; Kanoun, O. Study of the humidity effect on the electrical impedance of MWCNTs/epoxy nanocomposites. In Proceedings of the Conference: 9th International Workshop on Impedance Spectroscopy, Chemnitz, Germany, 26–28 September 2016; pp. 55–58. [Google Scholar]
- Zhao, Z.G.; Liu, X.W.; Chen, W.P.; Li, T. Carbon nanotubes humidity sensor based on high testing frequencies. Sens. Actuators A Phys. 2011, 168, 10–13. [Google Scholar] [CrossRef]
- Shah, M.; Ahmad, Z.; Sulaiman, K.; Karimov, K.S.; Sayyad, M.H. Carbon nanotubes nanocomposite in humidity sensors. Solid State Electron. 2012, 69, 18–21. [Google Scholar] [CrossRef]
- Matsubara, E.Y.; Luengo, C.A.; Rosolen, J.M. Lithium-doped endohedral single-walled carbon nanotubes can arise during tube growth. Chem. Phys. Lett. 2013, 590, 175–179. [Google Scholar] [CrossRef]
- Verma, M.L.; Minakshi, M.; Singh, N.S. Synthesis and Characterization of Solid Polymer Electrolyte based on Activated Carbon for Solid State Capacitor. Electrochim. Acta 2014, 137, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Park, S.M.; Yoo, J.S. Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements. Anal. Chem. 2003, 75, 455–461. [Google Scholar] [CrossRef]
- Maultzsch, J.; Telg, H.; Reich, S.; Thomsen, C. Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment. Phys. Rev. B 2005, 72, 205438. [Google Scholar] [CrossRef]
- Montoro, L.A.; Rosolen, J.M. A multi-step treatment to effective purification of single-walled carbon nanotubes. Carbon 2006, 44, 3293–3301. [Google Scholar] [CrossRef]
- Nakai, Y.; Honda, K.; Yanagi, K.; Kataura, H.; Kato, T.; Yamamoto, T.; Maniwa, Y. Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film. Appl. Phys. Express 2014, 7, 025103. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.L.; Hu, C.G.; Fang, L.; Wang, S.X.; Tian, Y.S.; Pan, C.Y. Humidity Sensor Based onMulti-Walled Carbon Nanotube Thin Films. J. Nanomater. 2011, 2011, 707303. [Google Scholar] [CrossRef]
- Arunachalam, S.; Gupta, A.A.; Izquierdo, R.; Nabki, F. Suspended Carbon Nanotubes for Humidity Sensing. Sensors 2018, 18, 1655. [Google Scholar] [CrossRef]
- Yadav, B.C.; Singh, R.; Singh, S. Investigations on humidity sensing of nanostructured tin oxide synthesised via mechanochemical method. J. Exp. Nanosci. 2013, 5, 670–683. [Google Scholar] [CrossRef]
- Goak, J.C.; Lee, S.H.; Han, J.H.; Jang, S.H.; Kim, K.B.; Seo, Y.; Seo, Y.S.; Lee, N. Spectroscopic studies and electrical properties of transparent conductive films fabricated by using surfactant-stabilized single-walled carbon nanotube suspensions. Carbon 2011, 49, 4301–4313. [Google Scholar] [CrossRef]
- Zhang, K.; Zou, J.; Zhang, Q. Roles of inter-SWCNT junctions in resistive humidity response. Nanotechnology 2015, 26, 455501. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.A.; Snow, E.S.; Bǎdescu, S.C.; Reinecke, T.L.; Perkins, F.K. Role of Defects in Single-Walled Carbon Nanotube Chemical Sensors. Nano Lett. 2006, 6, 1747–1751. [Google Scholar] [CrossRef] [PubMed]
- Khojin, A.S.; Field, C.R.; Yeom, J.; Masel, R.I. Sensitivity of nanotube chemical sensors at the onset of Poole–Frenkel conduction. Appl. Phys. Lett. 2010, 96, 163110. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, C.; Al-Hamry, A.; Kanoun, O.; Rahaman, M.; Zahn, D.R.T.; Matsubara, E.Y.; Rosolen, J.M. Humidity Sensing Behavior of Endohedral Li-Doped and Undoped SWCNT/SDBS Composite Films. Sensors 2019, 19, 171. https://doi.org/10.3390/s19010171
Müller C, Al-Hamry A, Kanoun O, Rahaman M, Zahn DRT, Matsubara EY, Rosolen JM. Humidity Sensing Behavior of Endohedral Li-Doped and Undoped SWCNT/SDBS Composite Films. Sensors. 2019; 19(1):171. https://doi.org/10.3390/s19010171
Chicago/Turabian StyleMüller, Christian, Ammar Al-Hamry, Olfa Kanoun, Mahfujur Rahaman, Dietrich R. T. Zahn, Elaine Yoshiko Matsubara, and José Mauricio Rosolen. 2019. "Humidity Sensing Behavior of Endohedral Li-Doped and Undoped SWCNT/SDBS Composite Films" Sensors 19, no. 1: 171. https://doi.org/10.3390/s19010171
APA StyleMüller, C., Al-Hamry, A., Kanoun, O., Rahaman, M., Zahn, D. R. T., Matsubara, E. Y., & Rosolen, J. M. (2019). Humidity Sensing Behavior of Endohedral Li-Doped and Undoped SWCNT/SDBS Composite Films. Sensors, 19(1), 171. https://doi.org/10.3390/s19010171