Superhydrophobic Soot Coated Quartz Crystal Microbalances: A Novel Platform for Human Spermatozoa Quality Assessment
Abstract
:1. Introduction
2. Theoretical Aspects of the QCM’s Operation in Liquid Environments
3. Materials and Methods
3.1. Human Spermatozoa Collection, Processing and Experimental Treatments
3.2. Soot Synthesis and Deposition
3.3. QCM Based System for Human Spermatozoa Quality Assessment
4. Results and Discussion
4.1. Structure and Morphology of the Soot Coatings
4.2. Semen Quality Analysis Using Uncoated 5 MHz QCMs
4.3. Semen Quality Analysis Using Superhydrophobic Soot Coated 5 MHz QCMs
4.4. Insights into the Detection of HSA and Human Spermatozoa Using Uncoated/Soot Coated 5 MHz QCMs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krausz, C.; Riera-Escamilla, A. Genetics of male infertility. Nat. Rev. Urol. 2018, 15, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Singh, A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015, 4, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Maggi, M. Sexual dysfunction and male infertility. Nat. Rev. Urol. 2018, 15, 287–307. [Google Scholar] [CrossRef] [PubMed]
- Oliva, A.; Spira, A.; Multigner, L. Contribution of environmental factors to the risk of male infertility. Hum. Reprod. 2001, 16, 1768–1776. [Google Scholar] [CrossRef] [PubMed]
- Sansone, A.; Dato, C.D.; de Angelis, C.; Menafra, D.; Pozza, C.; Pivonello, R.; Isidori, A.; Gianfrilli, D. Smoke, alcohol and drug addiction and male fertility. Reprod. Biol. Endocrinol. 2018, 16, 3. [Google Scholar] [CrossRef] [Green Version]
- Allersma, T.; Farquhar, C.; Cantineau, A.E. Natural cycle in vitro fertilization (IVF) for subfertile couples. Cochrane Database Syst. Rev. 2013, 8, CD010550. [Google Scholar]
- Evans, J.; Hannan, N.J.; Edgell, T.A.; Vollenhoven, B.J.; Lutjen, P.J.; Osianlis, T.; Salamonsen, L.A.; Rombaust, L.J.F. Fresh versus frozen embryo transfer: Backing clinical decisions with scientific and clinical evidence. Hum. Reprod. Update 2014, 20, 808–821. [Google Scholar] [CrossRef]
- Loutradi, K.E.; Tarlatzis, B.C.; Goulis, D.G.; Zepiridis, L.; Pagou, T.; Chatziioannou, E.; Grimbizis, G.F.; Papadimas, I.; Bontis, I. The effects of sperm quality on embryo development after intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 2006, 23, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Stamenov, G.; Parvanov, D.; Chaushev, T.; Baltadzhieva, D.; Iliev, I.; Dzhambazov, B. Approaches for prediction of the implantation potential of human embryos. J. Biosci. Biotechnol. 2013, 2, 79–88. [Google Scholar]
- Franken, D.R.; Oehninger, S. Semen analysis and sperm function testing. Asian J. Androl. 2012, 14, 6–13. [Google Scholar] [CrossRef]
- Mortimer, D.; Mortimer, S.T. Computer-aided sperm analysis (CASA) of sperm motility and hyperactivation. Methods Mol. Biol. 2013, 927, 77–87. [Google Scholar] [PubMed]
- Tomlinson, M.; Turner, J.; Powell, G.; Sakkas, D. One-step disposable chambers for sperm concentration and motility assessment: How do they compare with the World Health Organization’s recommended methods? Hum. Reprod. 2001, 16, 121–124. [Google Scholar] [CrossRef]
- Kovács, T.; Békési, G.; Fábian, A.; Rákosy, Z.; Horváth, G.; Mátyus, L.; Balázs, M.; Jenei, A. DNA flow cytometry of human spermatozoa: Consistent stoichiometric staining of sperm DNA using a novel decondensation protocol. Cytom. Part A 2008, 73, 965–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballantine, D.S.; White, R.M.; Martin, S.J.; Ricco, A.J.; Zellers, E.T.; Frye, G.C.; Wohltjen, H. Chemical and Biological Sensors. In Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications; Levy, M., Stern, R., Eds.; Elsevier: New York, NY, USA, 1997; pp. 222–320. [Google Scholar]
- Sauerbrey, G.Z. Verwendung von schwingquarzen zur waegung duenner schechten and zur mikrowaegung. Physics 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985, 57, 1770–1771. [Google Scholar] [CrossRef]
- Yao, C.; Qu, L.; Fu, W. Detection of fibrinogen and coagulation factor VIII in plasma by a quartz crystal microbalance biosensor. Sensors 2013, 13, 6946–6956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yao, Y.; Shi, Y. Performance enhancement of interdigital electrode-piezoelectric quartz crystal (IDE-PQC) salt concentration sensor by increasing the electrode area of piezoelectric quartz crystal (PQC). Sensors 2018, 18, 3224. [Google Scholar] [CrossRef] [PubMed]
- Románszki, L.; Tatarko, M.; Jiao, M.; Keresztes, Z.; Hianik, T.; Thompson, M. Casein probe-based fast plasmin determination in the picomolar range by an ultra-high frequency acoustic wave biosensor. Sens. Actuators B Chem. 2018, 275, 206–214. [Google Scholar] [CrossRef]
- Arif, S.; Qudsia, S.; Urooj, S.; Chaudry, N.; Arshad, A. Blueprint of quartz crystal microbalance biosensor for early detection of breast cancer through salivary antibodies against ATP6AP1. Biosens. Bioelectron. 2015, 65, 62–70. [Google Scholar] [CrossRef]
- Pan, M.; Li, R.; Xu, L.; Yang, J.; Cui, X.; Wang, S. Reproducible molecularly imprinted piezoelectric sensor for accurate and sensitive detection of ractopamine in swine and feed products. Sensors 2018, 18, 1870. [Google Scholar] [CrossRef]
- Olsson, A.L.; Mitzel, M.R.; Tufenkji, N. QCM-D for non-destructive real-time assessment of Pseudomonas aeruginosa biofilm attachment to the substratum during biofilm growth. Colloids Surf. B Biointerfaces 2015, 136, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Esmeryan, K.D.; Castano, C.E.; Abolghasemibizaki, M.; Mohammadi, R. An artful method for in-situ assessment of the anti-biofouling potential of various functional coatings using a quartz crystal microbalance. Sens. Actuators B Chem. 2017, 243, 910–918. [Google Scholar] [CrossRef]
- Atherton, S.; Evans, C.R.; Roach, P.; Hughes, D.C.; McHale, G.; Newton, M.I. Investigation of operating parameters for a semen quality analysis system. In Proceedings of the International Conference on Biomedical Electronics and Devices, Porto, Portugal, 14–17 January 2009; p. 13. [Google Scholar]
- Newton, M.I.; Atherton, S.; Morris, R.H.; Stanley, S.M.; Evans, C.R.; Hughes, D.C.; McHale, G. Low-cost QCM sensor system for screening semen samples. J. Sens. 2010, 2010, 326365. [Google Scholar] [CrossRef]
- Atherton, S. Semen Quality Detection Using Acoustic Wave Sensors. Ph.D. Thesis, Nottingham Trent University, Nottingham, UK, 2011. [Google Scholar]
- Martin, S.J.; Granstaff, V.E.; Frye, G.C. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal. Chem. 1991, 63, 2272–2281. [Google Scholar] [CrossRef]
- Martin, B.A.; Hager, H.E. Flow profile above a quartz crystal vibrating in liquid. J. Appl. Phys. 1989, 65, 2627–2629. [Google Scholar] [CrossRef]
- McHale, G.; Roach, P.; Evans, C.R.; Shirtcliffe, N.J.; Elliot, S.J.; Newton, M.I. Sensor response of superhydrophobic quartz crystal resonators. In Proceedings of the 2008 IEEE International Frequency Control Symposium, Honolulu, HI, USA, 19–21 May 2008; pp. 698–704. [Google Scholar]
- Duncan-Hewitt, W.C.; Thompson, M. Four-layer theory for the acoustic shear wave sensor in liquids incorporating interfacial slip and liquid structure. Anal. Chem. 1992, 64, 94–105. [Google Scholar] [CrossRef]
- Yang, M.; Thompson, M. Interfacial properties and the response of the thickness-shear-mode acoustic wave sensor in liquids. Langmuir 1993, 9, 802–811. [Google Scholar] [CrossRef]
- Roach, P.; McHale, G.; Evans, C.R.; Shirtcliffe, N.J.; Newton, M.I. Decoupling of the liquid response of a superhydrophobic quartz crystal microbalance. Langmuir 2007, 23, 9823–9830. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Muramatsu, H.; Fujihira, M. Energy dissipation at ultrasonically oscillating superhydrophobic surface in various liquids. Jpn. J. Appl. Phys. 2005, 44, 6726–6730. [Google Scholar] [CrossRef]
- Kwoun, S.J.; Lec, R.M.; Cairncross, R.A.; Shah, P.; Brinker, C.J. Characterization of superhydrophobic materials using multiresonance acoustic shear wave sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 1400–1403. [Google Scholar] [CrossRef]
- Esmeryan, K.D.; McHale, G.; Trabi, C.L.; Geraldi, N.R.; Newton, M.I. Manipulated wettability of a superhydrophobic quartz crystal microbalance through electrowetting. J. Phys. D Appl. Phys. 2013, 46, 345307. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.; McHale, G.; Newton, M.I. Acoustic Biosensor for Detecting Surface Interactions, Such as Surface Binding Events, Comprises Super-Nonwetting or Super-Wetting Surface. Canadian Patent Application CA2,451,413, 28 May 2005. [Google Scholar]
- Global for Fertilization. Available online: https://www.lifeglobalgroup.com/global_Fert.shtml (accessed on 4 December 2018).
- Esmeryan, K.D.; Castano, C.E.; Bressler, A.H.; Abolghasemibizaki, M.; Fergusson, C.P.; Roberts, A.; Mohammadi, R. Kinetically driven graphite-like to diamond-like carbon transformation in low temperature laminar diffusion flames. Diam. Relat. Mater. 2017, 75, 58–68. [Google Scholar] [CrossRef]
- Esmeryan, K.D.; Castano, C.E.; Mohammadi, R. Interactions of superhydrophobic carbon soot coatings with short alkyl chain alcohols and fluorocarbon solutions. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 715–724. [Google Scholar] [CrossRef]
- Esmeryan, K.D.; Castano, C.E.; Mohammadi, R.; Lazarov, Y.; Radeva, E.I. Delayed condensation and frost formation on superhydrophobic carbon soot coatings by controlling the presence of hydrophilic active sites. J. Phys. D Appl. Phys. 2018, 51, 055302. [Google Scholar] [CrossRef] [Green Version]
- Esmeryan, K.D.; Castano, C.E.; Bressler, A.H.; Abolghasemibizaki, M.; Mohammadi, R. Rapid synthesis of inherently robust and stable superhydrophobic carbon soot coatings. Appl. Surf. Sci. 2016, 369, 341–347. [Google Scholar] [CrossRef]
- Esmeryan, K.D.; Bressler, A.H.; Castano, C.E.; Fergusson, C.P.; Mohammadi, R. Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings. Appl. Surf. Sci. 2016, 390, 452–460. [Google Scholar] [CrossRef]
- Esmeryan, K.D.; Castano, C.E.; Bressler, A.H.; Fergusson, C.P.; Mohammadi, R. Single-step flame synthesis of carbon nanoparticles with tunable structure and chemical reactivity. RSC Adv. 2016, 6, 61620–61629. [Google Scholar] [CrossRef]
- Extremely Water Repellent Carbon Soot. Available online: https://www.youtube.com/watch?v=BYE62KeN9P4 (accessed on 4 December 2018).
- Monkos, K. On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach. Biochim. Biophys. Acta 2004, 1700, 27–34. [Google Scholar] [CrossRef]
- Lin, M.C.; Tsai, T.C.; Yang, Y.S. Measurement of viscosity of human semen with a rotational viscometer. J. Formos. Med. Assoc. 1992, 91, 419–423. [Google Scholar]
- Auger, J.; Eustache, F.; Ducot, B.; Blandin, T.; Daudin, M.; Diaz, I.; El Matribi, S.; Gony, B.; Keskes, L.; Kolbezen, M.; et al. Intra- and inter-individual variability in human sperm concentration, motility and vitality assessment during a workshop involving ten laboratories. Hum. Reprod. 2000, 15, 2360–2368. [Google Scholar] [CrossRef] [Green Version]
- Esmeryan, K.D.; Avramova, I.A.; Castano, C.E.; Ivanova, I.A.; Mohammadi, R.; Radeva, E.I.; Stoyanova, D.S.; Vladkova, T.G. Early stage anti-bioadhesion behavior of superhydrophobic soot based coatings towards Pseudomonas putida. Mater. Des. 2018, 160, 395–404. [Google Scholar] [CrossRef]
- Saber, R.; Mutlu, S.; Piskin, E. Glow-discharge treated piezoelectric quartz crystals as immunosensors for HSA detection. Biosens. Bioelectron. 2002, 17, 727–734. [Google Scholar] [CrossRef]
- Li, Y.; Kwak, J.C.T. pH-dependent viscosity enhancement in aqueous systems of hydrophobically modified acrylamide and acrylic acid copolymers. Langmuir 2002, 18, 10049–10051. [Google Scholar] [CrossRef]
- Andreu, A.; Stoeckli, H.F.; Bradley, R.H. Specific and non-specific interactions on non-porous carbon black surfaces. Carbon 2007, 45, 1854–1864. [Google Scholar] [CrossRef] [Green Version]
Sodium Chloride | Sodium Pyruvate | Potassium Chloride | EDTA |
---|---|---|---|
l-Arginine | l-Threonine | l-Alanine | l-Cystine |
l-Asparagine | l-Histidine | l-Aspartic Acid | l-Tyrosine |
l-Glutamic Acid | l-Leucine | Potassium Phosphate | l-Valine |
l-Phenylalanine | l-Methionine | Glycyl-l-Glutamine | l-Serine |
l-Lysine | l-Proline | Sodium Bicarbonate | Glycine |
l-Tryptophan | l-Isoleucine | Gentamicin Sulfate | Phenol Red |
Calcium Chloride | Sodium Lactate | Magnesium Sulfate | Glucose |
Type of QCM | fair (MHz) | Rair (Ω) | fGlobal (MHz) | RGlobal (Ω) | Δf (Hz) | ΔR (Ω) |
---|---|---|---|---|---|---|
Uncoated | 5.057125 | 29 | 5.055989 | 315 | −1136 | 286 |
5.055699 | 29 | 5.054717 | 314 | −982 | 285 | |
Soot coated | 5.140457 | 185 | 5.140344 | 173 | −113 | −12 |
5.140462 | 185 | 5.140312 | 171 | −149 | −14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmeryan, K.D.; Ganeva, R.R.; Stamenov, G.S.; Chaushev, T.A. Superhydrophobic Soot Coated Quartz Crystal Microbalances: A Novel Platform for Human Spermatozoa Quality Assessment. Sensors 2019, 19, 123. https://doi.org/10.3390/s19010123
Esmeryan KD, Ganeva RR, Stamenov GS, Chaushev TA. Superhydrophobic Soot Coated Quartz Crystal Microbalances: A Novel Platform for Human Spermatozoa Quality Assessment. Sensors. 2019; 19(1):123. https://doi.org/10.3390/s19010123
Chicago/Turabian StyleEsmeryan, Karekin D., Rumiana R. Ganeva, Georgi S. Stamenov, and Todor A. Chaushev. 2019. "Superhydrophobic Soot Coated Quartz Crystal Microbalances: A Novel Platform for Human Spermatozoa Quality Assessment" Sensors 19, no. 1: 123. https://doi.org/10.3390/s19010123
APA StyleEsmeryan, K. D., Ganeva, R. R., Stamenov, G. S., & Chaushev, T. A. (2019). Superhydrophobic Soot Coated Quartz Crystal Microbalances: A Novel Platform for Human Spermatozoa Quality Assessment. Sensors, 19(1), 123. https://doi.org/10.3390/s19010123