Ultra-Wideband (UWB) Antenna Sensor Based Microwave Breast Imaging: A Review
Abstract
:1. Introduction
2. Limitations of Current Detection Techniques
3. UWB Sensor Based Microwave Imaging
3.1. Operational Microwave Imaging System
3.2. Tomographic Microwave Imaging System
3.3. Radar-Based UWB Microwave Imaging System
4. Challenges of Microwave Imaging (MWI) and Future Development
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kirubakaran, R.; Chee, J.T.; Mahamad, A.N. Awareness of breast cancer among surgical patients in a tertiary hospital in malaysia. Asian Pac. J. Cancer Prev. 2017, 18, 115–120. [Google Scholar] [PubMed]
- DeSantis, C.E.; Fedewa, S.A.; Goding Sauer, A.; Kramer, J.L.; Smith, R.A.; Jemal, A. Breast cancer statistics, 2015: Convergence of incidence rates between black and white women. CA Cancer J. Clin. 2016, 66, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Kahar, M.; Ray, A.; Sarkar, D.; Sarkar, P. An UWB microstrip monopole antenna for breast tumor detection. Microw. Opt. Technol. Lett. 2015, 57, 49–54. [Google Scholar] [CrossRef]
- Zhang, H. Microwave Imaging for Ultra-Wideband Antenna Based Cancer Detection. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 2015. [Google Scholar]
- Zhang, Y.; Hong, W.; Yu, C.; Kuai, Z.-Q.; Don, Y.-D.; Zhou, J.-Y. Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line. IEEE Trans. Antennas Propag. 2008, 56, 3063–3068. [Google Scholar] [CrossRef]
- Jalilvand, M.; Li, X.; Zwirello, L.; Zwick, T. Ultra wideband compact near-field imaging system for breast cancer detection. IET Microw. Antennas Propag. 2015, 9, 1009–1014. [Google Scholar] [CrossRef]
- Aguilar, S.M.; Al-Joumayly, M.A.; Burfeindt, M.J.; Behdad, N.; Hagness, S.C. Multiband miniaturized patch antennas for a compact, shielded microwave breast imaging array. IEEE Trans. Antennas Propag. 2014, 62, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Craddock, I.; Klemm, M.; Leendertz, J.; Preece, A.; Benjamin, R. An improved hemispeherical antenna array design for breast imaging. In Proceedings of the Second European Conference on Antennas and Propagation (EuCAP 2007), Edinburgh, UK, 11–16 November 2007; pp. 1–5. [Google Scholar]
- Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems. Available online: https://www.fcc.gov/document/revision-part-15-commissions-rules-regarding-ultra-wideband-transmission-systems-4 (accessed on 11 April 2018).
- Kuhl, C.K.; Schrading, S.; Leutner, C.C.; Morakkabati-Spitz, N.; Wardelmann, E.; Fimmers, R.; Kuhn, W.; Schild, H.H. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J. Clin. Oncol. 2005, 23, 8469–8476. [Google Scholar] [CrossRef] [PubMed]
- Elmore, J.G.; Barton, M.B.; Moceri, V.M.; Polk, S.; Arena, P.J.; Fletcher, S.W. Ten-year risk of false positive screening mammograms and clinical breast examinations. N. Engl. J. Med. 1998, 338, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, H.; Porter, E.; Santorelli, A.; Gosselin, B.; Popovic, M.; Rusch, L. Flexible sixteen monopole antenna array for microwave breast cancer detection. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 27–31 August 2014; pp. 3775–3778. [Google Scholar]
- Berg, W.A.; Gutierrez, L.; NessAiver, M.S.; Carter, W.B.; Bhargavan, M.; Lewis, R.S.; Ioffe, O.B. Diagnostic accuracy of mammography, clinical examination, us, and mr imaging in preoperative assessment of breast cancer. Radiology 2004, 233, 830–849. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.M.; El-Shenawee, M. Review of electromagnetic techniques for breast cancer detection. IEEE Rev. Biomed. Eng. 2011, 4, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Fear, E.C.; Meaney, P.M.; Stuchly, M.A. Microwaves for breast cancer detection? IEEE Potentials 2003, 22, 12–18. [Google Scholar] [CrossRef]
- Li, L.-W.; Li, Y.-N.; Yeo, T.S.; Mosig, J.R.; Martin, O.J. A broadband and high-gain metamaterial microstrip antenna. Appl. Phys. Lett. 2010, 96, 164101. [Google Scholar] [CrossRef] [Green Version]
- Pan, J. Medical Applications of Ultra-Wideband (UWB). Available online: https://www.cse.wustl.edu/~jain/cse574-08/ftp/uwb/ (accessed on 11 April 2018).
- Yao, J.; Tchafa, F.M.; Jain, A.; Tjuatja, S.; Huang, H. Far-field interrogation of microstrip patch antenna for temperature sensing without electronics. IEEE Sens. J. 2016, 16, 7053–7060. [Google Scholar] [CrossRef]
- Abbosh, A. Miniaturization of planar ultrawideband antenna via corrugation. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 685–688. [Google Scholar] [CrossRef]
- Ojaroudi, M.; Ghobadi, C.; Nourinia, J. Small square monopole antenna with inverted t-shaped notch in the ground plane for UWB application. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 728–731. [Google Scholar] [CrossRef]
- Lakrit, S.; Ammor, H.; Terhzaz, J.; Tribak, A. Realization and measurements of a miniature square patch antenna for ultra wideband applications. Int. J. Microw. Opt. Technol. 2015, 10, 307–313. [Google Scholar]
- Liu, H.-W.; Yang, C.-F. Miniature hook-shaped monopole antenna for UWB applications. Electron. Lett. 2010, 46, 265–266. [Google Scholar] [CrossRef]
- Azim, R.; Islam, M.T.; Misran, N. Compact tapered-shape slot antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1190–1193. [Google Scholar] [CrossRef]
- Pandey, G.; Singh, H.; Bharti, P.; Meshram, M. Metamaterial-based UWB antenna. Electron. Lett. 2014, 50, 1266–1268. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, S.; Wen, P.; Xiao, X.; Che, W.; Guan, X. Flexible cpw-fed fishtail-shaped antenna for dual-band applications. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 770–773. [Google Scholar]
- Samsuzzaman, M.; Islam, M.T. A semicircular shaped super wideband patch antenna with high bandwidth dimension ratio. Microw. Opt. Technol. Lett. 2015, 57, 445–452. [Google Scholar] [CrossRef]
- Natarajan, R.; George, J.V.; Kanagasabai, M.; Shrivastav, A.K. A compact antipodal vivaldi antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1557–1560. [Google Scholar] [CrossRef]
- Mahmud, M.; Islam, M.T.; Samsuzzaman, M.; Kibria, S.; Misran, N. Design and parametric investigation of directional antenna for microwave imaging application. IET Microw. Antennas Propag. 2016, 11, 770–778. [Google Scholar] [CrossRef]
- Mosallaei, H.; Sarabandi, K. Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Antennas Propag. 2004, 52, 2403–2414. [Google Scholar] [CrossRef]
- Fear, E.C.; Hagness, S.C.; Meaney, P.M.; Okoniewski, M.; Stuchly, M.A. Enhancing breast tumor detection with near-field imaging. IEEE Microw. Mag. 2002, 3, 48–56. [Google Scholar] [CrossRef]
- Jossinet, J.; Schmitt, M. A review of parameters for the bioelectrical characterization of breast tissue. Ann. N. Y. Acad. Sci. 1999, 873, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Mahmud, M.Z.; Misran, N.; Takada, J.-I.; Cho, M. Microwave breast phantom measurement system with compact side slotted directional antenna. IEEE Access 2017, 5, 5321–5330. [Google Scholar] [CrossRef]
- Thomson, D.; Card, D.; Bridges, G. Rf cavity passive wireless sensors with time-domain gating-based interrogation for shm of civil structures. IEEE Sens. J. 2009, 9, 1430–1438. [Google Scholar] [CrossRef]
- Yao, J.; Skilskyj, J.; Huang, H. A compact, low-cost, real-time interrogation system for dynamic interrogation of microstrip patch antenna sensor. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Moninoring, Denver, CO, USA, 4–8 March 2018; p. 105980Y. [Google Scholar]
- Hagness, S.C.; Taflove, A.; Bridges, J.E. Three-dimensional fdtd analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element. IEEE Trans. Antennas Propag. 1999, 47, 783–791. [Google Scholar] [CrossRef]
- Girbau, D.; Ramos, Á.; Lazaro, A.; Rima, S.; Villarino, R. Passive wireless temperature sensor based on time-coded UWB chipless rfid tags. IEEE Trans. Microw. Theory Tech. 2012, 60, 3623–3632. [Google Scholar] [CrossRef]
- Meaney, P.M.; Fanning, M.W.; Li, D.; Poplack, S.P.; Paulsen, K.D. A clinical prototype for active microwave imaging of the breast. IEEE Trans. Microw. Theory Tech. 2000, 48, 1841–1853. [Google Scholar]
- Klemm, M.; Craddock, I.J.; Leendertz, J.A.; Preece, A.; Benjamin, R. Radar-based breast cancer detection using a hemispherical antenna array—Experimental results. IEEE Trans. Antennas Propag. 2009, 57, 1692–1704. [Google Scholar] [CrossRef] [Green Version]
- Bourqui, J.; Okoniewski, M.; Fear, E.C. Balanced antipodal vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Trans. Antennas Propag. 2010, 58, 2318–2326. [Google Scholar] [CrossRef]
- Amineh, R.K.; Trehan, A.; Nikolova, N.K. Tem horn antenna for ultra-wide band microwave breast imaging. Prog. Electromagn. Res. B 2009, 13, 59–74. [Google Scholar] [CrossRef]
- Gibbins, D.; Klemm, M.; Craddock, I.J.; Leendertz, J.A.; Preece, A.; Benjamin, R. A comparison of a wide-slot and a stacked patch antenna for the purpose of breast cancer detection. IEEE Trans. Antennas Propag. 2010, 58, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Semenov, S.Y.; Svenson, R.H.; Bulyshev, A.E.; Souvorov, A.E.; Nazarov, A.G.; Sizov, Y.E.; Posukh, V.G.; Pavlovsky, A.; Repin, P.N.; Starostin, A.N. Three-dimensional microwave tomography: Initial experimental imaging of animals. IEEE Trans. Biomed. Eng. 2002, 49, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Semenov, S.; Posukh, V.; Bulyshev, A.; Williams, T.; Sizov, Y.; Repin, P.; Souvorov, A.; Nazarov, A. Microwave tomographic imaging of the heart in intact swine. J. Electromagn. Waves Appl. 2006, 20, 873–890. [Google Scholar] [CrossRef]
- Semenov, S.; Kellam, J.; Sizov, Y.; Nazarov, A.; Williams, T.; Nair, B.; Pavlovsky, A.; Posukh, V.; Quinn, M. Microwave tomography of extremities: 1. Dedicated 2d system and physiological signatures. Phys. Med. Biol. 2011, 56, 2005–2017. [Google Scholar] [CrossRef] [PubMed]
- Semenov, S.; Kellam, J.; Nair, B.; Williams, T.; Quinn, M.; Sizov, Y.; Nazarov, A.; Pavlovsky, A. Microwave tomography of extremities: 2. Functional fused imaging of flow reduction and simulated compartment syndrome. Phys. Med. Biol. 2011, 56, 2019–2130. [Google Scholar] [CrossRef] [PubMed]
- Fear, E.C.; Bourqui, J.; Curtis, C.; Mew, D.; Docktor, B.; Romano, C. Microwave breast imaging with a monostatic radar-based system: A study of application to patients. IEEE Trans. Microw. Theory Tech. 2013, 61, 2119–2128. [Google Scholar] [CrossRef]
- Porter, E.; Santorelli, A.; Popovic, M. Time-domain microwave radar applied to breast imaging: Measurement reliability in a clinical setting. Prog. Electromagn. Res. 2014, 149, 119–132. [Google Scholar] [CrossRef]
- Bourqui, J.; Sill, J.M.; Fear, E.C. A prototype system for measuring microwave frequency reflections from the breast. J. Biomed. Imaging 2012, 2012, 851234. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Fhager, A.; Linner, P.; Persson, M.; Zirath, H. Experimental investigation of the accuracy of an ultrawideband time-domain microwave-tomographic system. IEEE Trans. Instrum. Meas. 2011, 60, 3939–3949. [Google Scholar] [CrossRef]
- Sabouni, A.; Noghanian, S. The robustness of hga/fdtd in the presence of noise for microwave breast cancer detection. In Proceedings of the Antennas and Propagation Society International Symposium (APSURSI’09), Charleston, SC, USA, 1–5 June 2009; pp. 1–4. [Google Scholar]
- Zeng, X.; Fhager, A.; Persson, M. Effects of noise on tomographic breast imaging. In Proceedings of the 2011 XXXth URSIGeneral Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011; pp. 1–4. [Google Scholar]
- Porter, E.; Coates, M.; Popović, M. An early clinical study of time-domain microwave radar for breast health monitoring. IEEE Trans. Biomed. Eng. 2016, 63, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Attardo, E.A.; Dassano, G.; Vipiana, F.; Casu, M.R.; Vacca, M.; Pulimeno, A.; Vecchi, G. Design and modeling of a microwave imaging system for breast cancer detection. In Proceedings of the 2015 9th European Conference onAntennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–2. [Google Scholar]
- Vasquez, J.T.; Vipiana, F.; Dassano, G.; Casu, M.R.; Vacca, M.; Pulimeno, A.; Solimene, R. Experimental results on the use of the music algorithm for early breast cancer detection. In Proceedings of the 2015 International Conference onElectromagnetics in Advanced Applications (ICEAA), Turin, Italy, 7–11 September 2015; pp. 1084–1085. [Google Scholar]
- Amineh, R.K.; Ravan, M.; Trehan, A.; Nikolova, N.K. Near-field microwave imaging based on aperture raster scanning with tem horn antennas. IEEE Trans. Antennas Propag. 2011, 59, 928–940. [Google Scholar] [CrossRef]
- Amineh, R.K.; Khalatpour, A.; Xu, H.; Baskharoun, Y.; Nikolova, N.K. Three-dimensional near-field microwave holography for tissue imaging. J. Biomed. Imaging 2012, 2012, 291494. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Yuan, M.; Stang, J.; Bresslour, E.; George, R.T.; Ybarra, G.A.; Joines, W.T.; Liu, Q.H. Active microwave imaging ii: 3-d system prototype and image reconstruction from experimental data. IEEE Trans. Microw. Theory Tech. 2008, 56, 991–1000. [Google Scholar]
- Yu, C.; Yuan, M.; Zhang, Y.; Stang, J.; George, R.T.; Ybarra, G.A.; Joines, W.T.; Liu, Q.H. Microwave imaging in layered media: 3-d image reconstruction from experimental data. IEEE Trans. Antennas Propag. 2010, 58, 440–448. [Google Scholar] [CrossRef]
- Zhurbenko, V.; Rubæk, T.; Krozer, V.; Meincke, P. Design and realisation of a microwave three-dimensional imaging system with application to breast-cancer detection. IET Microw. Antennas Propag. 2010, 4, 2200–2211. [Google Scholar] [CrossRef] [Green Version]
- Yarovoy, A.G.; Savelyev, T.G.; Aubry, P.J.; Lys, P.E.; Ligthart, L.P. UWB array-based sensor for near-field imaging. IEEE Trans. Microw. Theory Tech. 2007, 55, 1288–1295. [Google Scholar] [CrossRef]
- Khor, W.C.; Bialkowski, M.E.; Abbosh, A.; Seman, N.; Crozier, S. An ultra wideband microwave imaging system for breast cancer detection. IEICE Trans. Commun. 2007, 90, 2376–2381. [Google Scholar] [CrossRef]
- Flores-Tapia, D.; Pistorius, S. Real time breast microwave radar image reconstruction using circular holography: A study of experimental feasibility. Med. Phys. 2011, 38, 5420–5431. [Google Scholar] [CrossRef] [PubMed]
- Lazaro, A.; Girbau, D.; Villarino, R. Simulated and experimental investigation of microwave imaging using UWB. Prog. Electromagn. Res. 2009, 94, 263–280. [Google Scholar] [CrossRef]
- Mohammed, B.A.J.; Abbosh, A.M.; Sharpe, P. Planar array of corrugated tapered slot antennas for ultrawideband biomedical microwave imaging system. Int. J. RF Microw. Comput.-Aided Eng. 2013, 23, 59–66. [Google Scholar] [CrossRef]
- Zhang, D.; Mase, A. Experimental study on radar-based breast cancer detection using UWB antennas without background subtraction. Biomed. Eng. Appl. Basis Commun. 2011, 23, 383–391. [Google Scholar] [CrossRef]
- Li, D.; Meaney, P.M.; Paulsen, K.D. Conformal microwave imaging for breast cancer detection. IEEE Trans. Microw. Theory Tech. 2003, 51, 1179–1186. [Google Scholar]
- Klemm, M.; Leendertz, J.A.; Gibbins, D.; Craddock, I.J.; Preece, A.; Benjamin, R. Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios. IEEE Trans. Antennas Propag. 2010, 58, 2337–2344. [Google Scholar] [CrossRef]
- Wang, L.; Peng, H.; Ma, J. Microwave breast imaging techniques and measurement systems. In New Perspectives in Breast Imaging; InTechOpen: London, UK, 2017. [Google Scholar]
- Kuwahara, Y. Microwave imaging for early breast cancer detection. In New Perspectives in Breast Imaging; InTechOpen: London, UK, 2017. [Google Scholar]
- Kurrant, D.; Bourqui, J.; Curtis, C.; Fear, E. Evaluation of 3-d acquisition surfaces for radar-based microwave breast imaging. IEEE Trans. Antennas Propag. 2015, 63, 4910–4920. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, Y.; Tan, W.; Hong, W. Application of sparse array and mimo in near-range microwave imaging. Proc. SPIE 2011, 8179, 81790X. [Google Scholar] [CrossRef]
Modality | Sensitivity | Specificity | Positive Predictive Value | Accuracy | Advantages | Limitations |
---|---|---|---|---|---|---|
Mammography | 67.8% (120/177) | 75% (61/81) | 85.7% (120/140) | 70.2% (181/258) | Low cost | False positive and negative diagnoses |
Mammography and clinical examination | 77.4% (137/177) | 72% (58/81) | 58.6% (137/160) | 75.6% (195/258) | Low cost | Lower accuracy |
Clinical examination | 50.3% (89/177) | 92% (75/81) | 94% (89/95) | 63.6% (164/258) | Simple and easy process | Small tumor cannot detect |
Ultrasound | 83% (147/177) | 34% (28/81) | 73.5% (147/200) | 67.8% (175/258) | Better than X-ray | Difficult to detect deep-lying or solid tumor |
Mammography and ultra sound | 91.5% (162/177) | 23% (19/81) | 72.3% (162/224) | 70.2% (181/258) | Cost effective | Exists unwanted compression |
Mammography ultrasound and clinical examination | 93.2% (165/177) | 22% (18/81) | 72.4% (165/228) | 70.9% (183/258) | Good candidate for detection | Complex signal processing |
MRI | 94.4% (167/177) | 26% (21/81) | 73.6% (167/227) | 72.9% (188/258) | Provide high resolution images | Higher cost and time-consuming process |
Mammography, clinical examination, and MRI | 99.4% (176/177) | 7% (6/81) | 70.1% (176/251) | 70.5% (182/258) | Best solution ever found | Complex procedure, higher cost and time-consuming process |
Origin | Imaging Domain | Antenna Configuration | Targets | Results |
---|---|---|---|---|
Dartmouth College [37,66] | Cylindrical tank (agar gel, corn syrup, water mixer) | 16 antennas Mechanical scanning | Detecting malignant tumors | 2D and 3D images |
University of Bristol [38,67] | Acrylonitrile butadiene styrene plastic half sphere | UWB radar | Measure the symptomatic patients | First real breast phantom but limitations in terms of resolution and clutter rejection |
Carolinas medical center [44,45] | Metallic tank 21.5 cm in diameter | 24 waveguide antennas | Detection of physiological activity of soft tissues | 2D and 3D tomographic images of swine torso obtained |
University of Calgary [46] | Tank with canola oil | Single balanced antipodal antenna with mechanical scanning | Pilot clinical experiment | Consistent imaging results |
University of Manitoba [62] | Plexiglass tank with canola oil | Single Vivaldi antenna | Pre-clinical UWB prototype | Improvements to quantitative dielectric image |
University Rovira [63] | Water filled Cylindrical glass tank | UWB disc monopole antenna | Working prototype for microwave imaging | Tumor position was detected |
University of Queensland [64] | Plastic container filled with canola oil | 12 UWB antennas | UWB biomedical imaging | Mutual coupling and fidelity |
McGill University [47] | Hemispherical ceramic (Al2O3) radome | 16 elements antenna array | Clinical testing | First study of microwave time domain with actual volunteers |
Politecnico di Torino [53] | Metallic Cylinder | Monopole 8 element antenna array | Design and construction of imaging prototype | 2D imaging at MiMed cost meeting |
Duke University [57,58] | Rectangular tub filled with fluid | Two dipole antennas | 3D imaging system prototype | 5 mm diameter dielectric objects detected |
Toyohashi University of Technology [65] | Rectangular tub with cooking oil | UWB Vivaldi antennas | Breast cancer tumor detection | 9 mm metallic ball detected |
Technical University of Denmark [59] | Water filled spheres | 32 monopole antennas | 20 to 40 mm target objects detection | 3D images are obtained with consuming more than 100 min |
McMaster University [55] | Glycerin based flat artificial phantom | 2 TEM horn antenna | 3D model and phantom analysis where antenna directly contacted imaged body | Image de-blurred using blind deconvolution algorithm |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmud, M.Z.; Islam, M.T.; Misran, N.; Almutairi, A.F.; Cho, M. Ultra-Wideband (UWB) Antenna Sensor Based Microwave Breast Imaging: A Review. Sensors 2018, 18, 2951. https://doi.org/10.3390/s18092951
Mahmud MZ, Islam MT, Misran N, Almutairi AF, Cho M. Ultra-Wideband (UWB) Antenna Sensor Based Microwave Breast Imaging: A Review. Sensors. 2018; 18(9):2951. https://doi.org/10.3390/s18092951
Chicago/Turabian StyleMahmud, Md. Zulfiker, Mohammad Tariqul Islam, Norbahiah Misran, Ali F. Almutairi, and Mengu Cho. 2018. "Ultra-Wideband (UWB) Antenna Sensor Based Microwave Breast Imaging: A Review" Sensors 18, no. 9: 2951. https://doi.org/10.3390/s18092951
APA StyleMahmud, M. Z., Islam, M. T., Misran, N., Almutairi, A. F., & Cho, M. (2018). Ultra-Wideband (UWB) Antenna Sensor Based Microwave Breast Imaging: A Review. Sensors, 18(9), 2951. https://doi.org/10.3390/s18092951