Discrimination of Milks with a Multisensor System Based on Layer-by-Layer Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Characterization of the Sensors
3.2. Electrochemical Characterization
3.3. Response of the Multisensor System to Milk Samples. Discrimination and Correlations with Chemical Parameters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ohlsson, J.A.; Johansson, M.; Hansson, H.; Abrahamson, A.; Byberg, L.; Smedman, A.; Lindmark-Månsson, H.; Lundh, A. Lactose, glucose and galactose content in milk, fermented milk and lactose-free milk products. Int. Dairy J. 2017, 73, 151–154. [Google Scholar] [CrossRef]
- Brandt, M.; Haeussermann, A.; Hartung, E. Invited review: Technical solutions for analysis of milk constituents and abnormal milk. J. Dairy Sci. 2010, 93, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Rezaeinasab, M.; Benvidi, A.; Tezerjani, M.D.; Jahanbani, S.; Kianfar, A.H.; Sedighipoor, M. An electrochemical sensor based on Ni(II) complex and multi wall carbon nano tubes platform for determination of glucose in real samples. Electroanalysis 2017, 29, 423–432. [Google Scholar] [CrossRef]
- Pellegrini, G.E.; Carpico, G.; Coni, E. Electrochemical sensor for the detection and presumptive identification of quinolone and tetracycline residues in milk. Anal. Chim. Acta 2004, 520, 13–18. [Google Scholar] [CrossRef]
- Muhammad, A.; Hajian, R.; Yusof, N.A.; Shams, N.; Abdullah, J.; Woid, P.M.; Garmestanib, H. A screen printed carbon electrode modified with carbon nanotubes and gold nanoparticles as a sensitive electrochemical sensor for determination of thiamphenicol residue in milk. RSC Adv. 2018, 8, 2714–2722. [Google Scholar] [CrossRef] [Green Version]
- Yola, M.L.; Eren, T.; Atar, N. A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: Application to selective determination of tyrosine in milk. Sens. Actuators B Chem. 2015, 210, 149–157. [Google Scholar] [CrossRef]
- Bai, J.; Zhanga, X.; Penga, Y.; Hong, X.; Liu, Y.; Jiang, S.; Ning, B.; Gao, Z. Ultrasensitive sensing of diethylstilbestrol based on AuNPs/MWCNTs-CS composites coupling with sol-gel molecularly imprinted polymer as a recognition element of an electrochemical sensor. Sens. Actuators B Chem. 2017, 238, 420–426. [Google Scholar] [CrossRef]
- Pilloton, R.; Mascini, M.; Casella, I.G.; Festa, M.R.; Bottari, E. Lactose determination in raw milk with a two-enzyme based electrochemical sensor. Anal. Lett. 1987, 20, 1803–1814. [Google Scholar] [CrossRef]
- Ammam, M.; Fransaer, J. Two-enzyme lactose biosensor based on β-galactosidase and glucose oxidase deposited by AC-electrophoresis: Characteristics and performance for lactose determination in milk. Sens. Actuators B Chem. 2010, 148, 583–589. [Google Scholar] [CrossRef]
- De Oliveira, R.F.; De Barros, A.; Ferreira, M. Nanostructured films: Langmuir-Blodgett (LB) and layer-by-layer (LbL) techniques. In Nanostructured; Da Roz, A.L., Ferreira, M., Leite, F.L., Oliveira, O.N., Jr., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 106–120. [Google Scholar]
- Alessio, P.; Martin, C.S.; De Saja, J.A.; Rodriguez-Mendez, M.L. Mimetic biosensors composed by layer-by-layer films of phospholipid, phthalocyanine and silver nanoparticles to polyphenol detection. Sens. Actuators B Chem. 2016, 233, 654–666. [Google Scholar] [CrossRef]
- Garcia-Hernandez, C.; Medina-Plaza, C.; Garcia-Cabezon, C.; Martin-Pedrosa, F.; Del Valle, I.; De Saja, J.A.; Rodriguez-Mendez, M.L. An electrochemical quartz crystal microbalance multisensor system based on phthalocyanine nanostructured films: Discrimination of musts. Sensors 2015, 15, 29233–29249. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.P.; Moraes, M.L.; Volpati, D.; Miranda, P.B.; Oliveira, O.N.; Ferreira, M. Amperometric detection of lactose using-galactosidase immobilized in layer-by-layer films. ACS Appl. Mater. Interfaces 2014, 6, 11657–11664. [Google Scholar] [CrossRef] [PubMed]
- Graça, J.S.; De Oliveira, R.F.; De Moraes, M.L.; Ferreira, M. Amperometric glucose biosensor based on layer-by-layer films of microperoxidase-11 and liposome-encapsulated glucose oxidase. Bioelectrochemistry 2014, 96, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Y.; Zhang, Y.; Wei, G. Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic prussian blue catalytic polymer and the enzymatic effect of glucose oxidase. Anal. Chem. 2012, 84, 1888–1893. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, E.G.R.; Brazaca, L.C.; Rodríguez-Mendez, M.L.; De Saja, J.A.; Zucolotto, V. Immobilization of lutetium bisphthalocyanine in nanostructured biomimetic sensors using the LbL technique for phenol detection. Biosens. Bioelectron. 2011, 26, 4715–4719. [Google Scholar] [CrossRef] [PubMed]
- De Lucena, N.C.; Miyazaki, C.M.; Shimizu, F.M.; Constantino, C.J.L.; Ferreira, M. Layer-by-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine. Appl. Surf. Sci. 2018, 436, 957–966. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Sun, J.; Chen, S. Stimulation of laccase biocatalysis in ionic liquids: A review on recent progress. Curr. Protein Pept. Sci. 2017, 19, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Delezuk, J.A.M.; Pavinatto, A.; Moraes, M.L.; Shimizua, F.M.; Rodriguesa, V.C.; Campana-Filho, S.P.; Ribeiro, S.J.L.; Oliveira, O.N., Jr. Silk fibroin organization induced by chitosan in layer-by-layer films: Application as a matrix in a biosensor. Carbohydr. Polym. 2017, 155, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Evik, E.; Şenel, M.; Abasyank, M.F. Construction of biosensor for determination of galactose with galactose oxidase immobilized on polymeric mediator contains ferrocene. Curr. Appl. Phys. 2010, 10, 1313–1316. [Google Scholar]
- Moyo, M.; Okonkwo, J.O.; Agyei, N.M. Recent advances in polymeric materials used as electron mediators and immobilizing matrices in developing enzyme electrodes. Sensors 2012, 12, 923–953. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Chen, C.; Zhou, Y.; Fei, J.; Ding, Y.; Zhao, J. A galactose oxidase biosensor based on graphene composite film for the determination of galactose and dihydroxyacetone. Electroanalysis 2016, 28, 183–188. [Google Scholar] [CrossRef]
- Rodriguez-Mendez, M.L. Electronic Noses and Tongues in the Food Industry; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 209–223. [Google Scholar]
- Rodriguez-Mendez, M.L.; De Saja, J.A.; Gonzalez-Anton, R.; Garcia-Hernandez, C.; Medina-Plaza, C.; Garcia-Cabezon, C.; Martín-Pedrosa, F. Electronic noses and tongues in wine industry. Front. Bioeng. Biotechnol. 2016, 4, 81. [Google Scholar] [CrossRef] [PubMed]
- Medina-Plaza, C.; De Saja, J.A.; Rodriguez-Mendez, M.L. Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Biosens. Bioelectron. 2014, 57, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Winquist, F.; Krantz-Rülcker, C.; Wide, P.; Lundström, I. Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry. Meas. Sci. Technol. 1998, 9, 1937–1946. [Google Scholar] [CrossRef]
- Tazi, I.; Triyana, K.; Siswanta, D.; Veloso, A.C.A.; Peres, A.M.; Dias, L.G. Dairy products discrimination according to the milk type using an electrochemical multisensor device coupled with chemometric tools. J. Food Meas. Charact. 2018, 1–9. [Google Scholar] [CrossRef]
- Mercante, L.A.; Scagion, V.P.; Pavinatto, A.; Sanfelice, R.C.; Mattoso, L.H.C.; Correa, D.S. Electronic tongue based on nanostructured hybrid films of gold nanoparticles and phthalocyanines for milk analysis. J. Nanomater. 2015, 2015, 890637. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.; Zhang, X. Monitoring of quality and storage time of unsealed pasteurized milk by voltammetric electronic tongue. Electrochim. Acta 2013, 88, 231–239. [Google Scholar] [CrossRef]
- Winquist, F.; Holmin, S.; Krantz-Rülcker, C.; Wide, P.; Lundström, I. A hybrid electronic tongue. Anal. Chim. Acta 2000, 406, 147–157. [Google Scholar] [CrossRef]
- Paixão, T.R.L.C.; Bertotti, M. Fabrication of disposable voltammetric electronic tongues by using Prussian Blue films electrodeposited onto CD-R gold surfaces and recognition of milk adulteration. Sens. Actuators B Chem. 2009, 137, 266–273. [Google Scholar] [CrossRef]
- Winquist, F.; Bjorklund, R.; Krantz-Rülcker, C.; Lundström, I.; Östergren, K.; Skoglund, T. An electronic tongue in the dairy industry. Sens. Actuators B Chem. 2005, 111, 299–304. [Google Scholar] [CrossRef]
- Oliveri, P.; Casolino, M.C.; Forina, M. Chemometric Brains for Artificial Tongues. In Advances in Food and Nutrition Research; Taylor, S.L., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; Volume 61, pp. 57–117. [Google Scholar]
- Kirsanov, D.; Mednova, O.; Vietoris, V.; Kilmartin, P.A.; Legin, A. Towards reliable estimation of an ‘electronic tongue’ predictive ability from PLS regression models in wine analysis. Talanta 2012, 90, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Prieto, N.; Oliveri, P.; Leardi, R.; Gay, M.; Apetrei, C.; Rodriguez-Méndez, M.L.; De Saja, J.A. Application of a GA-PLS strategy for variable reduction of electronic tongue signals. Sens. Actuators B Chem. 2013, 183, 52–57. [Google Scholar] [CrossRef]
- Arrieta, A.; Rodriguez-Mendez, M.L.; De Saja, J.A. Langmuir-Blodgett film and carbon paste electrodes based on phthalocyanines as sensing units for taste. Sens. Actuators B Chem. 2003, 95, 357–365. [Google Scholar] [CrossRef]
- Riul, A.; Dantas, C.A.R.; Miyazaki, C.M.; Oliveira, O.N., Jr. Recent advances in electronic tongues. Analyst 2010, 136, 2481–2495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Plaza, C.; Garcia-Hernandez, C.; De Saja, J.A.; Fernandez-Escudero, J.A.; Barajas, E.; Medrano, G.; Garcia-Cabezon, C.; Martin-Pedrosa, F.; Rodriguez-Mendez, M.L. The advantages of disposable screen-printed biosensors in a bioelectronic tongue for the analysis of grapes. LWT Food Sci. Technol. 2015, 62, 940–947. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, R.; Garcia-Hernandez, C.; Medina-Plaza, C.; Garcia-Cabezon, C.; Fernandez-Escudero, J.A.; Barajas, E.; Medrano, G.; Rodriguez-Mendez, M.L. A different approach for the analysis of grapes: Using the skin as sensing element. Food Res. Int. 2018, 107, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Denes, G. Phthalocyanines: Properties and Applications; Leznoff, C.C., Lever, A.B.P., Eds.; VCH: New York, NY, USA, 1996; Volume 4, pp. 241–242. [Google Scholar]
- Sharma, S.K.; Singhal, R.; Malhotra, B.D.; Sehgal, N.; Kumar, A. Lactose biosensor based on Langmuir-Blodgett films of poly(3-hexyl thiophene). Biosens. Bioelectron. 2004, 20, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Chen, C.; Jing, G. The galactose biosensor based on microporous polyacrylonitrile. Biocatal. Biotransfor. 2005, 23, 439–444. [Google Scholar] [CrossRef]
- Bertoncello, P.; Peruffo, M. An investigation on the self-aggregation properties of sulfonated copper(II) phthalocyanine (CuTsPc) thin films. Colloid Surf. A 2008, 321, 106–112. [Google Scholar] [CrossRef]
- Yasmeen, S.; Kabiraz, M.; Saha, B.; Qadir, M.; Gafur, M.; Masum, S. Chromium (VI) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent. Int. Res. J. Pure Appl. Chem. 2016, 10, 1–14. [Google Scholar] [CrossRef]
- Dharaskar, S.A.; Wasewar, K.L.; Varma, M.N.; Shende, D.Z.; Yoo, C.K. Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel. Arab. J. Chem. 2016, 9, 578–587. [Google Scholar] [CrossRef]
- Andersen, T.; Brems, N.; Borglum, M.M.; Kold-Christensen, S.; Hansen, E.; Jorgensen, J.H.; Nygaard, L. Modern laboratory practice-1: Chemical analysis. In Modern Dairy Technology. Advances in Milk Products, 2nd ed.; Robinson, R.K., Ed.; Blackie Academic & Professional: London, UK, 1993; Volume 2, pp. 381–416. [Google Scholar]
Film Material | Peak Position (cm−1) | Assignment |
---|---|---|
CuPcS | 1027 | υ(C–N) stretching in pyrrole vibration |
1174 | S=O symmetric stretching vibration | |
CHI | 1367 | CH2OH stretching |
3400 | OH stretching vibration | |
IL | 1078 | C–H deformation in plane |
1647 | C=C and C=N stretching | |
GAO | 1107 | Hydroxyl group |
1540 | Amide II, NH bending, and CN stretching | |
1650 | Amide I, C=O stretching, and CN stretching |
ID | Lactose | Fat | Proteins | FPD | Urea | Acidity | ESM | Cells | UV–vis |
---|---|---|---|---|---|---|---|---|---|
Wlac1 | 4.87 | 3.52 | 3.22 | 8.842 | 242 | 13.8 | 8.842 | 17 | 3.459 |
WWlac2 | 4.86 | 3.53 | 3.26 | 9.009 | 262 | 14.4 | 9.009 | 32 | 3.493 |
WSSnolac1 | 3.32 | 1.80 | 3.40 | 7.325 | 619 | 11.4 | 7.325 | 25 | 3.108 |
WSSnolac2 | 3.14 | 1.84 | 3.30 | 7.195 | 594 | 11.6 | 7.195 | 15 | 3.065 |
Parameter | R2c (a) | RMSEC (b) | R2V (c) | RMSEV (d) | LV (e) |
---|---|---|---|---|---|
WFat | 0.9243 | 0.2345 | 0.9050 | 0.2770 | 2 |
WProteins | 0.9494 | 0.0151 | 0.9280 | 0.0190 | 1 |
WLactose | 0.9439 | 0.1943 | 0.9338 | 0.2220 | 2 |
WFDP | 0.9467 | 0.0820 | 0.9270 | 0.0101 | 1 |
WUrea | 0.9206 | 50.0362 | 0.9031 | 58.1922 | 2 |
WAcidity | 0.9232 | 0.3655 | 0.8939 | 0.4523 | 2 |
WESM | 0.9416 | 0.2020 | 0.9230 | 0.2443 | 2 |
WCells | 0.9976 | 0.3295 | 0.9867 | 0.8603 | 3 |
WUV–vis | 0.9038 | 0.0607 | 0.8751 | 0.0728 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvo-Comino, C.; García-Hernández, C.; García-Cabezón, C.; Rodríguez-Méndez, M.L. Discrimination of Milks with a Multisensor System Based on Layer-by-Layer Films. Sensors 2018, 18, 2716. https://doi.org/10.3390/s18082716
Salvo-Comino C, García-Hernández C, García-Cabezón C, Rodríguez-Méndez ML. Discrimination of Milks with a Multisensor System Based on Layer-by-Layer Films. Sensors. 2018; 18(8):2716. https://doi.org/10.3390/s18082716
Chicago/Turabian StyleSalvo-Comino, Coral, Celia García-Hernández, Cristina García-Cabezón, and Maria Luz Rodríguez-Méndez. 2018. "Discrimination of Milks with a Multisensor System Based on Layer-by-Layer Films" Sensors 18, no. 8: 2716. https://doi.org/10.3390/s18082716
APA StyleSalvo-Comino, C., García-Hernández, C., García-Cabezón, C., & Rodríguez-Méndez, M. L. (2018). Discrimination of Milks with a Multisensor System Based on Layer-by-Layer Films. Sensors, 18(8), 2716. https://doi.org/10.3390/s18082716