Recording Heart Rate Variability of Dairy Cows to the Cloud—Why Smartphones Provide Smart Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Probands
- Cow I: BCS = 3.5; Days in Milk (DIM) = 66; not gestating
- Cow II: BCS = 3.25; DIM = 166; gestating
2.2. Testing Procedure and Recording of Data
- RR interval: distance between two R peaks (ms);
- SDNN: standard deviation of all RR intervals; square root of variance (ms);
- rMSSD: Square root of the mean of the sum of all differences between adjacent RR intervals; higher values indicate increased parasympathetic activity (ms);
2.3. Processing of Data and HRV Analysis
3. Results
3.1. Robust Method for Processing Time Domain HRV Parameters
3.2. Results for the Conformity of Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bittlmayer, H. Rahmenbedingungen und Strategien für die Milchviehhaltung in Bayern. In Milchviehhaltung—Nachhaltig und Zukunftsorientiert, Proceedings of the Landtechnisch-Bauliche Jahrestagung, Marktoberdorf, Germany, 26 November 2015; Bayerische Landesanstalt für Landwirtschaft (LfL): Freising-Weihenstephan, Germany, 2015. [Google Scholar]
- Lorz, A.; Metzger, E. Tierschutzgesetz: Kommentar, 6th ed.; Verlag C.H. Beck: Munich, Germany, 2008; pp. 347–466. ISBN 978-3-406-55436-0. [Google Scholar]
- Kovács, L.; Jurkovich, V.; Bakony, M.; Szenci, O.; Póti, P.; Tőzsér, J. Welfare implication of measuring heart rate and heart rate variability in dairy cattle: Literature review and conclusions for future research. Animal 2014, 8, 316–330. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Asitz, S.; Baucells, J.; Castillejos, L. A stochastic dynamic model of a dairy farm to evaluate the technical and economic performance under different scenarios. J. Dairy Sci. 2018, 101, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fraser, D. Science, Values and Animal Welfare: Exploring the ‘Inextricable Connection’. Anim. Welf. 1995, 4, 103–117. [Google Scholar]
- Huhtala, A.; Suhonen, K.; Mäkelä, P.; Hakojärvi, M.; Ahokas, J. Evaluation of Instrumentation for Cow Positioning and Tracking Indoors. Biosyst. Eng. 2007, 96, 399–405. [Google Scholar] [CrossRef]
- Mattachini, G.; Antler, A.; Riva, E.; Arbel, A.; Provolo, G. Automated measurement of lying behavior for monitoring the comfort and welfare of lactating dairy cows. Livest. Sci. 2013, 158, 145–150. [Google Scholar] [CrossRef]
- Stewart, M.; Webster, J.R.; Schaefer, A.L.; Stafford, K.J. Infrared thermography and heart rate variability for non-invasive assessment of animal welfare. Anzcaart News 2008, 21, 1–4. [Google Scholar]
- Von Borell, E.; Langbein, J.; Després, G.; Hansen, S.; Leterrier, C.; Marchant-Forde, J.; Marchant-Forde, R.; Minero, M.; Mohr, E.; Prunier, A.; et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—A Review. Physiol. Behav. 2007, 92, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Marchant-Forde, R.M.; Marlin, D.J.; Marchant-Forde, J.N. Validation of a cardiac monitor for measuring heart rate variability in adult female pigs: Accuracy, artefacts and editing. Physiol. Behav. 2004, 80, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Eller-Berndl, D. Herzratenvariabilität, 2nd ed.; Verlagshaus der Ärzte: Vienna, Austria, 2015; pp. 10–62. ISBN 978-3-99052-093-2. [Google Scholar]
- Mohr, E.; Langbein, J.; Nürnberg, G. Heart rate variability: A noninvasive approach to measure stress in calves and cows. Physiol. Behav. 2002, 75, 251–259. [Google Scholar] [CrossRef]
- Ziemssen, T.; Süss, M.; Reichmann, H. Die kardiovaskuläre Funktionsdiagnostik des autonomen Nervensystems—Eine Einführung. Neurophysiol. Lab. 2002, 24, 57–77. [Google Scholar]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Vescio, B.; Salsone, M.; Gambardella, A.; Quattrone, A. Comparison between Electrocardiographic and Earlobe Pulse Photoplethysmographic Detection for Evaluating Heart Rate Variability in Healthy Subjects in Short- and Long-Term Recordings. Sensors 2018, 18, 844. [Google Scholar] [CrossRef] [PubMed]
- Stein, P.K.; Bosner, M.S.; Kleiger, R.E.; Conger, B.M. Heart rate variability: A measure of cardiac autonomic tone. Am. Heart J. 1994, 127, 1376–1381. [Google Scholar] [CrossRef]
- Sammito, S.; Böckelmann, I. Analyse der Herzfrequenzvariabilität. Mathematische Basis und praktische Anwendung. Herz 2015, 40, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Hagen, K.; Langbein, J.; Schmied, C.; Lexer, D.; Waiblinger, S. Heart rate variability in dairy cows—Influences of breed and milking system. Physiol. Behav. 2005, 85, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Ernst, G. Hidden Signals—The History and Methods of Heart Rate Variability. Front. Public Health 2017, 5, 265. [Google Scholar] [CrossRef] [PubMed]
- Seely, A.J.E.; Macklem, P.T. Complex systems and the technology of variability analysis. Crit. Care 2004, 8, R367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plews, D.J.; Scott, B.; Altini, M.; Wood, M.; Kilding, A.E.; Laursen, P.B. Comparison of Heart Rate Variability Recording with Smart Phone Photoplethysmographic, Polar H7 Chest Strap and Electrocardiogram Methods. Int. J. Sports Physiol. Perform. 2017, 12, 1324–1328. [Google Scholar] [CrossRef] [PubMed]
- Nunan, D.; Donovan, G.; Jakovljevic, D.G.; Hodges, L.D.; Sandercock, G.R.H.; Brodie, D.A. Validity and reliability of short-term heart-rate variability from the Polar S810. Med. Sci. Sports Exerc. 2009, 41, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Ille, N.; Erber, R.; Aurich, C.; Aurich, J. Comparison of heart rate and heart rate variability obtained by heart rate monitors and simultaneously recorded electrocardiogram signals in non-exercising horses. J. Vet. Behav. 2014, 9, 341–346. [Google Scholar] [CrossRef]
- Stucke, D.; Große Rse, M.; Lebelt, D. Measuring heart rate variability in horses to investigate the autonomic nervous system activity—Pros and Cons of Different Methods. Appl. Anim. Behav. Sci. 2015, 166, 1–10. [Google Scholar] [CrossRef]
- Sammito, S.; Böckelmann, I. Möglichkeiten und Einschränkungen der Herzfrequenzmessung und der Analyse der Herzfrequenzvariabilität mittels mobiler Messgeräte: Eine systematische Literaturübersicht. Herzschrittmacherther. Elektrophysiol. 2016, 27, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Hopster, H.; Blokhuis, H.J. Validation of a heart-rate monitor for measuring a stress response in dairy cows. Can. J. Anim. Sci. 1994, 74, 465–474. [Google Scholar] [CrossRef] [Green Version]
- Parker, M.; Goodwin, D.; Eager, R.A.; Redhead, E.S.; Marlin, D.J. Comparison of Polar® heart rate interval data with simultaneously recorded ECG signals in horses. Comp. Exerc. Physiol. 2009, 6, 137–142. [Google Scholar] [CrossRef]
- Perrotta, A.S.; Jeklin, A.; Hives, B.A.; Meanwell, L.E.; Warburton, D.E.R. Validity of the Elite HRV smartphone application for examining heart rate variability in a field-based setting. J. Strength Cond. Res. 2017, 8, 2296–2302. [Google Scholar] [CrossRef] [PubMed]
- Cheatham, S.W.; Kolber, M.J.; Ernst, M.P. Concurrent validity of resting pulse-rate measurements: A comparison of 2 smartphone applications, the polar H7 belt monitor, and a pulse oximeter with Bluetooth. J. Sport Rehabil. 2015, 24, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Jeyhani, V.; Mahdiani, S.; Peltokangas, M.; Vehkaoja, A. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015. [Google Scholar]
- Vezzosi, T.; Buralli, C.; Marchesotti, F.; Porporato, F.; Tognetti, R.; Zini, E. Diagnostic accuracy of a smartphone electrocardiograph in dogs: Comparison with standard 6-lead electrocardiography. Vet. J. 2016, 216, 33–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraus, M.S.; Gelzer, A.R.; Rishniw, M. Detection of heart rate and rhythm with a smartphone-based electrocardiograph versus a reference standard electrocardiograph in dogs and cats. J. Am. Vet. Med. Assoc. 2016, 249, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Nickel, A.; Schummer, E.; Seiferle, R. Lehrbuch der Anatomie der Haustiere: Band III Kreislaufsystem, Haut und Hautorgane, 4th ed.; Parey Verlag: Stuttgart, Germany, 2005; pp. 19–22. ISBN 3-8304-4164-9. [Google Scholar]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Manly, B.F.J. Errors in assigning grades based on tests of finite validity. Res. Q. Exerc. Sport 1989, 60, 180–182. [Google Scholar] [CrossRef] [PubMed]
- Hampel, F.R.; Ronchetti, E.M.; Rousseeuw, P.J.; Stahel, W.A. Robust Statistics: The Approach Based on Influence Functions, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 307–386. ISBN 9781118186435. [Google Scholar]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Jonckheer-Sheehy, V.S.M.; Vinke, C.M.; Ortolani, A. Validation of a Polar® human heart rate monitor for measuring heart rate and heart rate variability in adult dogs under stationary conditions. J. Vet. Behav. 2012, 7, 205–212. [Google Scholar] [CrossRef]
- Lenoir, A.; Trachsel, D.S.; Younes, M.; Barrey, E.; Robert, C. Agreement between Electrocardiogram and Heart Rate Meter Is Low for the Measurement of Heart Rate Variability during Exercise in Young Endurance Horses. Front. Vet. Sci 2017, 4, 170. [Google Scholar] [CrossRef] [PubMed]
- Peltola, M.A. Role of editing of R–R intervals in the analysis of heart rate variability. Front. Physiol. 2012, 3, 148. [Google Scholar] [CrossRef] [PubMed]
- Broux, B.; De Clercq, D.; Decloedt, A.; Ven, S.; Vera, L.; van Steenkiste, G.; Mitchell, K.; Schwarzwald, C.; van Loon, G. Heart rate variability parameters in horses distinguish atrial fibrillation from sinus rhythm before and after successful electrical cardioversion. Equine Vet. J. 2017, 49, 723–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giles, D.; Draper, N.; Mei, W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur. J. Appl. Physiol. 2016, 116, 563–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caminal, P.; Sola, F.; Gomis, P.; Guasch, E.; Perera, A.; Soriano, N.; Mont, L. Validity of the Polar V800 monitor for measuring heart rate variability. Eur. J. Appl. Physiol. 2018, 118, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Behmann, J.; Hendriksen, K.; Müller, U.; Büscher, W.; Plümer, L. Support Vector machine and duration-aware conditional random field for identification of spatio-temporal activity patterns by combined indoor positioning and heart rate sensors. Geoinformatica 2016, 20, 693–714. [Google Scholar] [CrossRef] [Green Version]
- Waiblinger, S.; Menke, C.; Fölsch, D.W. Influences on the avoidance and approach behaviour of dairy cows towards humans on 35 farms. Appl. Anim. Behav. Sci. 2003, 84, 23–39. [Google Scholar] [CrossRef]
- Barriuso, A.L.; Villarrubia González, G.; De Paz, J.F.; Lozano, Á.; Bajo, J. Combination of Multi-Agent Systems and Wireless Sensor Networks for the Monitoring of Cattle. Sensors 2018, 18, 108. [Google Scholar] [CrossRef] [PubMed]
Smartphone IoTool Mean ± SD | Polar V800 Mean ± SD | Spearman Correlation (p Value) | |
---|---|---|---|
Dairy Cow I | |||
RR interval (ms) | 819.08 ± 21.96 | 818.08 ± 22.91 | 0.98 * (<0.001) |
SDNN (ms) | 15.36 ± 8.31 | 14.67 ± 8.54 | 0.89 † (<0.001) |
rMSSD (ms) | 7.82 ± 1.86 | 7.41 ± 1.77 | 0.82 † (<0.001) |
Dairy Cow II | |||
RR interval (ms) | 899.84 ± 42.03 | 897.41 ± 44.91 | 0.98 * (<0.001) |
SDNN (ms) | 26.86 ± 15.15 | 26.33 ± 15.30 | 0.97 * (<0.001) |
rMSSD (ms) | 10.15 ± 2.22 | 9.34 ± 1.96 | 0.88 † (<0.001) |
Human control data | |||
RR interval (ms) | 1326.13 ± 123.08 | 1324.68 ± 125.86 | 0.99 * (<0.001) |
SDNN (ms) | 88.07 ± 43.73 | 88.50 ± 44.48 | 1.00 * (<0.001) |
rMSSD (ms) | 73.63 ± 12.73 | 73.59 ± 12.63 | 1.00 * (<0.001) |
Error % | Smartphone IoTool vs. Polar V800 |
---|---|
Dairy Cow I | |
RR interval (ms) | 0.12 |
SDNN (ms) | 4.70 |
rMSSD (ms) | 5.53 |
Dairy Cow II | |
RR interval (ms) | 0.27 |
SDNN (ms) | 2.01 |
rMSSD (ms) | 8.67 |
Human control data | |
RR interval (ms) | 0.11 |
SDNN (ms) | 0.49 |
rMSSD (ms) | 0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierig, M.; Mandtler, L.P.; Rottmann, P.; Stroh, V.; Müller, U.; Büscher, W.; Plümer, L. Recording Heart Rate Variability of Dairy Cows to the Cloud—Why Smartphones Provide Smart Solutions. Sensors 2018, 18, 2541. https://doi.org/10.3390/s18082541
Wierig M, Mandtler LP, Rottmann P, Stroh V, Müller U, Büscher W, Plümer L. Recording Heart Rate Variability of Dairy Cows to the Cloud—Why Smartphones Provide Smart Solutions. Sensors. 2018; 18(8):2541. https://doi.org/10.3390/s18082541
Chicago/Turabian StyleWierig, Maren, Leonard P. Mandtler, Peter Rottmann, Viktor Stroh, Ute Müller, Wolfgang Büscher, and Lutz Plümer. 2018. "Recording Heart Rate Variability of Dairy Cows to the Cloud—Why Smartphones Provide Smart Solutions" Sensors 18, no. 8: 2541. https://doi.org/10.3390/s18082541