Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Initial Processing
2.2. Aperture Coherence and the Coherence Factor (CF)
2.3. Acoustic Backscatter from Gas-Filled Bubbles in Water
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hovland, M.; Sommerville, J.H. Characteristics of two natural gas seepages in the North Sea. Mar. Pet. Geol. 1985, 2, 319–326. [Google Scholar] [CrossRef]
- Merewether, R.; Olsson, M.S.; Lonsdale, P. Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California. J. Geophys. Res. 1985, 90, 3075–3085. [Google Scholar] [CrossRef]
- Acosta, J. Occurrence of acoustic masking in sediments in two areas of the continental shelf of Spain: Ria de Muros (NW) and Gulf of Cadiz (SW). Mar. Geol. 1984, 58, 427–434. [Google Scholar] [CrossRef]
- Judd, A.G. The global importance and context of methane escape from the seabed. Geo-Mar. Lett. 2003, 23, 147–154. [Google Scholar] [CrossRef]
- Blackford, J.; Stahl, H.; Bull, J.M.; Berges, B.J.P.; Cevatoglu, M.; Lichtschlag, A.; Connelly, D.; James, R.H.; Kita, J.; Long, D.; et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nat. Clim. Chang. 2014, 4, 1011–1016. [Google Scholar] [CrossRef] [Green Version]
- Leifer, I.; Kamerling, M.J.; Luyendyk, B.P.; Wilson, D.S. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California. Geo-Mar. Lett. 2010, 30, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Westbrook, G.K.; Thatcher, K.E.; Rohling, E.J.; Piotrowski, A.M.; Pälike, H.; Osborne, A.H.; Nisbet, E.G.; Minshull, T.A.; Lanoisellé, M.; James, R.H.; et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Zimov, S.A.; Schuur, E.A.; Chapin III, F.S. Permafrost and the global carbon budget. Science 2006, 312, 1612–1613. [Google Scholar] [CrossRef] [PubMed]
- Anthony, K.; Anthony, P.; Grosse, G.; Chanton, J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat. Geosci. 2012, 5, 419–426. [Google Scholar] [CrossRef]
- Judd, A.; Hovland, M.; Dimitrov, L.; Garcia Gil, S.; Jukes, V. The geological methane budget at continental margins and its influence on climate change. Geofluids 2002, 2, 109–126. [Google Scholar] [CrossRef]
- Minnaert, M. On musical air-bubbles and the sounds of running water. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1933, 16, 235–248. [Google Scholar] [CrossRef]
- Leighton, T.G. The Acoustic Bubble; Academic Press: Cambridge, UK, 1997. [Google Scholar]
- Clay, C.S.; Medwin, H. Acoustical Oceanography: Principles and Applications; John Wiley & Sons: San Diego, CA, USA, 1998. [Google Scholar]
- Medwin, H.; Clay, C.S. Fundamentals of Acoustical Oceanography; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Nikolovska, A.; Sahling, H.; Bohrmann, G. Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Lurton, X. An Introduction to Underwater Acoustics: Principles and Applications; Springer Praxis Publishing: Chichester, UK, 2002. [Google Scholar]
- Greinert, J.; McGinnis, D.F.; Naudts, L.; Linke, P.; De Batist, M. Atmospheric methane flux from bubbling seeps: Spatially extrapolated quantification from a Black Sea shelf area. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Von Deimling, J.S.; Brockhoff, J.; Greinert, J. Flare imaging with multibeam systems: Data processing for bubble detection at seeps. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef] [Green Version]
- Dupré, S.; Buffet, G.; Mascle, J.; Foucher, J.P.; Gauger, S.; Boetius, A.; Marfia, C. High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys. Mar. Geophys. Res. 2008, 29, 275–290. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, I.R.; Leifer, I.; Sassen, R.; Stine, P.; Mitchell, R.; Guinasso, N. Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids 2002, 2, 95–107. [Google Scholar] [CrossRef]
- Heeschen, K.U.; Tréhu, A.M.; Collier, R.W.; Suess, E.; Rehder, G. Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Kannberg, P.K.; Tréhu, A.M.; Pierce, S.D.; Paull, C.K.; Caress, D.W. Temporal variation of methane flares in the ocean above Hydrate Ridge, Oregon. Earth Planet. Sci. Lett. 2013, 368, 33–42. [Google Scholar] [CrossRef]
- Veloso, M.; Greinert, J.; Mienert, J.; Batist, M. A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard. Limnol. Oceanogr. Methods 2015, 13, 267–287. [Google Scholar] [CrossRef] [Green Version]
- Hornafius, J.S.; Quigley, D.; Luyendyk, B.P. The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions. J. Geophys. Res. 1999, 104, 20703–20711. [Google Scholar] [CrossRef]
- Jerram, K.; Weber, T.C.; Beaudoin, J. Split-beam echo sounder observations of natural methane seep variability in the northern Gulf of Mexico. Geochem. Geophys. Geosyst. 2015, 16, 736–750. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.C.; Mayer, L.A.; Beaudoin, J.; Jerram, K.; Shedd, W.; Rice, G. Mapping gas seeps with the deepwater multibeam echosounder on Okeanos Explorer. Oceanography 2012, 25, 54–55. [Google Scholar]
- Weber, T.C.; Mayer, L.; Jerram, K.; Beaudoin, J.; Rzhanov, Y.; Lovalvo, D. Acoustic estimates of methane gas flux from the seabed in a 6000 km2 region in the Northern Gulf of Mexico. Geochem. Geophys. Geosyst. 2014, 15, 1911–1925. [Google Scholar] [CrossRef]
- Ostrowski, M.; da Silva, J.C.B.; Bazik-Sangolay, B. The response of sound scatterers to El Niño- and La Niña-like oceanographic regimes in the southeastern Atlantic. ICES J. Mar. Sci. 2009, 66, 1063–1072. [Google Scholar] [CrossRef]
- Dimitrov, L.; Doncheva, V. Seabed pockmarks in the Southern Bulgarian Black Sea zone. Bull. Geol. Soc. Den. 1994, 41, 24–33. [Google Scholar]
- Von Deimling, J.S.; Rehder, G.; Greinert, J.; McGinnnis, D.; Boetius, A.; Linke, P. Quantification of seep-related methane gas emissions at Tommeliten, North Sea. Cont. Shelf Res. 2011, 31, 867–878. [Google Scholar] [CrossRef]
- Römer, M.; Sahling, H.; Pape, T.; Bohrmann, G.; Spieß, V. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Dupré, S.; Woodside, J.; Klaucke, I.; Mascle, J.; Foucher, J.P. Widespread active seepage activity on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery. Mar. Geol. 2010, 275, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Blomberg, A.E.A.; Sæbø, T.O.; Hansen, R.E.; Pedersen, R.B.; Austeng, A. Automatic Detection of Marine Gas Seeps Using an Interferometric Sidescan Sonar. IEEE J. Ocean. Eng. 2017, 42, 590–602. [Google Scholar] [CrossRef]
- Leifer, I.; Tang, D. The acoustic signature of marine seep bubbles. J. Acoust. Soc. Am. 2007, 121, EL35–EL40. [Google Scholar] [CrossRef]
- Leighton, T.G.; White, P.R. Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions. Proc. R. Soc. A Math. Phys. Eng. Sci. 2011, 468, 485–510. [Google Scholar] [CrossRef] [Green Version]
- Bergès, B.J.; Leighton, T.G.; White, P.R. Passive acoustic quantification of gas fluxes during controlled gas release experiments. Int. J. Greenh. Gas Control 2015, 38, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.C.; Jerram, K.; Mayer, L. Acoustic sensing of gas seeps in the deep ocean with split beam echosounders. In Proceedings of the European Conference on Underwater Acoustic (ECUA) 2010, Istanbul, Turkey, 5–9 July 2010; pp. 189–195. [Google Scholar]
- Weber, T.C.; De Robertis, A.; Smith, S.; Greenaway, S.F.; Mayer, L.A.; Rice, G. Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders. Proc. Natl. Acad. Sci. USA 2011, 109, 20240–20245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Deimling, J.S.; Papenberg, C. Detection of gas bubble leakage via correlation of water column multibeam images. Ocean Sci. 2012, 8, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Urban, P.; Köser, K.; Greinert, J. Processing of multibeam water column image data for automated bubble/seep detection and repeated mapping. Limnol. Oceanogr. Methods 2017, 15, 1–21. [Google Scholar] [CrossRef]
- Weinstein, A.; Navarrete, L.; Ruppel, C.; Weber, T.C.; Leonte, M.; Kellermann, M.Y.; Arrington, E.C.; Valentine, D.L.; Scranton, M.I.; Kessler, J.D. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability. Geochem. Geophys. Geosyst. 2016, 17, 3882–3892. [Google Scholar] [CrossRef] [Green Version]
- Skarke, A.; Ruppel, C.; Kodis, M.; Brothers, D.; Lobecker, E. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat. Geosci. 2014, 7, 657. [Google Scholar] [CrossRef]
- Flatte, S.M.; Dashen, R.; Munk, W.H.; Watson, K.M.; Zachariasen, F. Sound Transmission through a Fluctuating Ocean; Cambridge Monographs on Mechanics and Applied Mathematics; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Andrew, R.K.; Howe, B.M.; Mercer, J.A. Transverse horizontal spatial coherence of deep arrivals at megameter ranges. J. Acoust. Soc. Am. 2005, 117, 1511–1526. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Sæbø, T.O.; Hansen, R.E.; Hanssen, A. Relative Height Estimation by Cross-correlating Ground-Range Synthetic Aperture Sonar Images. IEEE J. Ocean. Eng. 2007, 32, 971–982. [Google Scholar]
- Synnes, S.A.; Hansen, R.E.; Sæbø, T.O. Assessment of shallow water performance using interferometric sonar coherence. In Proceedings of the Underwater Acoustic Measurements 2009, Nafplion, Greece, 21–26 June 2009. [Google Scholar]
- Singh, A. Review Article Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Hunter, A.J.; van Vossen, R. Sonar target enhancement by shrinkage of incoherent wavelet coefficients. J. Acoust. Soc. Am. 2014, 135, 262–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallart, R.; Fink, M. The van Cittert–Zernike theorem in pulse echo measurements. J. Acoust. Soc. Am. 1991, 90, 2718–2727. [Google Scholar] [CrossRef]
- Hollman, K.; Rigby, K.; O’Donnell, M. Coherence factor of speckle from a multi-row probe. In Proceedings of the 1999 IEEE Ultrasonics Symposium, Caesars Tahoe, NV, USA, 17–20 October 1999; Volume 2, pp. 1257–1260. [Google Scholar]
- Blomberg, A.E.A.; Nilsen, C.I.C.; Austeng, A.; Hansen, R.E. Adaptive Sonar Imaging Using Aperture Coherence. IEEE J. Ocean. Eng. 2013, 38, 98–108. [Google Scholar] [CrossRef]
- Johnson, P.; Flinders, A.F.; Greenaway, S.F. R/V Sikuliaq EM302 & EM710 Multibeam Echosounder System Shipboard Acceptance Tests—SKQ201400L3; University of New Hampshire: Durham, NC, USA, 2014; p. 172. [Google Scholar]
- Ostrovsky, I. The acoustic quantification of fish in the presence of methane bubbles in the stratified Lake Kinneret, Israel. ICES J. Mar. Sci. 2009, 66, 1043–1047. [Google Scholar] [CrossRef] [Green Version]
- Ostrovsky, I. Hydroacoustic assessment of fish abundance in the presence of gas bubbles. Limnol. Oceanogr. Methods 2009, 7, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Stranne, C.; Mayer, L.; Weber, T.C.; Ruddick, B.R.; Jakobsson, M.; Jerram, K.; Weidner, E.; Nilsson, J.; Gårdfeldt, K. Acoustic Mapping of Thermohaline Staircases in the Arctic Ocean. Sci. Rep. 2017, 7, 15192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stranne, C.; Mayer, L.; Jakobsson, M.; Weidner, E.; Jerram, K.; Weber, T.C.; Anderson, L.G.; Nilsson, J.; Björk, G.; Gårdfeldt, K. Acoustic mapping of mixed layer depth. Ocean Sci. Discuss. 2018, 2018, 1–18. [Google Scholar] [CrossRef]
- Mackenzie, K.V. Nine-term equation for sound speed in the oceans. J. Acoust. Soc. Am. 1981, 70, 807–812. [Google Scholar] [CrossRef]
- Barham, E.G. Deep Scattering Layer Migration and Composition: Observations from a Diving Saucer. Science 1966, 151, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Simard, Y.; Mackas, D.L. Mesoscale Aggregations of Euphausiid Sound Scattering Layers on the Continental Shelf of Vancouver Island. Can. J. Fish. Aquat. Sci. 1989, 46, 1238–1249. [Google Scholar] [CrossRef]
- Robinson, C.J.; Goómez-Gutieérrez, J. Daily vertical migration of dense deep scattering layers related to the shelf-break area along the northwest coast of Baja California, Mexico. J. Plankton Res 1998, 20, 1679–1697. [Google Scholar] [CrossRef] [Green Version]
- Judd, A.G. Natural seabed gas seeps as sources of atmospheric methane. Environ. Geol. 2004, 46, 988–996. [Google Scholar] [CrossRef]
- Huang, S.W.; Robert, J.L.; Radulescu, E.; Vignon, F.; Erkamp, R. Beamforming techniques for ultrasound microcalcification detection. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 2193–2196. [Google Scholar]
- Lurton, X. An Introduction to Underwater Acoustics: Principles and Applications, 2nd ed.; Springer Praxis Publishing: Chichester, UK, 2010. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blomberg, A.E.A.; Weber, T.C.; Austeng, A. Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence. Sensors 2018, 18, 2033. https://doi.org/10.3390/s18072033
Blomberg AEA, Weber TC, Austeng A. Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence. Sensors. 2018; 18(7):2033. https://doi.org/10.3390/s18072033
Chicago/Turabian StyleBlomberg, Ann E. A., Thomas C. Weber, and Andreas Austeng. 2018. "Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence" Sensors 18, no. 7: 2033. https://doi.org/10.3390/s18072033
APA StyleBlomberg, A. E. A., Weber, T. C., & Austeng, A. (2018). Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence. Sensors, 18(7), 2033. https://doi.org/10.3390/s18072033