Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Hyperspectral Imaging System
2.3. Hyperspectral Image Acquisition and Correction
2.4. Hyperspectral Image Preprocessing and Spectral Data Extraction
2.5. Chemometric Methods
2.5.1. Optimal Wavelength Selection
2.5.2. Back Propagation Neural Network
2.5.3. Evolutionary Neural Network
2.5.4. Extreme Learning Machine
2.5.5. General Regression Neural Network
2.5.6. Radial Basis Neural Networks
2.6. Principal Component Analsis
3. Results and Discussion
3.1. Spectral Profiles
3.2. PCA Scores Image Visualization
3.3. PCA Scores Scattter Plot Analysis
3.4. Optimal Wavelengths Selection
3.5. Classification Models on Full Spectra and Optimal Wavelengths
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pereira, M.G.; Caramelo, L.; Gouveia, C.; Gomeslaranjo, J.; Es, M.M. Assessment of weather-related risk on chestnut productivity. Nat. Hazards Earth Syst. Sci. 2011, 11, 2729–2739. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.X.; Liang, L.S.; Zong, Y.C. Studies on the storage condition and quality change of Chinese chestnuts after harvest. For. Res. 2000, 13, 118–122. [Google Scholar]
- Jermini, M.; Conedera, M.; Sieber, T.N.; Sassella, A.; Schärer, H.; Jelmini, G.; Höhn, E. Influence of fruit treatments on perishability during cold storage of sweet chestnuts. J. Sci. Food Agric. 2006, 86, 877–885. [Google Scholar] [CrossRef]
- Tan, Z.L.; Wu, M.C.; Li, J.; Wang, Q.Z. Decay Mechanism of the Chestnut Stored in Low Temperature. Adv. Mater. Res. 2012, 554–556, 1337–1345. [Google Scholar] [CrossRef]
- Moscetti, R.; Monarca, D.; Cecchini, M.; Haff, R.P.; Contini, M.; Massantini, R. Detection of Mold-Damaged Chestnuts by Near-Infrared Spectroscopy. Postharvest Biol. Technol. 2014, 93, 83–90. [Google Scholar] [CrossRef]
- González, I.R.D.; Fulbright, D.W.; Ryser, E.T.; Guyer, D.; Bounous, G.; Beccaro, G.L. Shell mold and kernel decay of fresh chestnuts in Michigan. Acta Boreal. 2010, 866, 353–362. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Li, X.; Li, P.; Wang, W.; Zhan, H. Discrimination of moldy Chinese chestnut based on artificial neural network and near infrared spectra. Trans. Chin. Soc. Agric. Mach. 2009, 40, 109–112. [Google Scholar]
- Bauriegel, E.; Herppich, W.B. Hyperspectral and Chlorophyll Fluorescence Imaging for Early Detection of Plant Diseases, with Special Reference to Fusarium spec. Infections on Wheat. Agriculture 2014, 4, 32–57. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.; Shahrimie, M.; Asaari, M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.E.; Scheunders, P. Close range hyperspectral imaging of plants: A review. Biosyst. Eng. 2017, 164, 49–67. [Google Scholar] [CrossRef]
- Ge, Y.F.; Bai, G.; Stoerger, V.; Schnable, J.C. Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput RGB and hyperspectral imaging. Comput. Electron. Agric. 2016, 127, 625–632. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef] [Green Version]
- Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351–1362. [Google Scholar] [CrossRef] [Green Version]
- Manolakis, D.; Shaw, G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 2002, 19, 29–43. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review—Part II: Applications. Innov. Food Sci. Emerg. Technol. 2013, 19, 15–28. [Google Scholar] [CrossRef]
- Wu, J.H.; Peng, Y.K.; Jiang, F.C.; Wei, W.; Li, Y.Y.; Gao, X.D. Hyperspectral scattering profiles for prediction of beef tenderness. Trans. Chin. Soc. Agric. Mach. 2009, 40, 135–138. [Google Scholar] [CrossRef]
- Lohumi, S.; Mo, C.; Kang, J.S.; Hong, S.J.; Cho, B.K. Nondestructive Evaluation for the Viability of Watermelon (Citrullus lanatus) Seeds Using Fourier Transform Near Infrared Spectroscopy. Anal. Sci. Technol. 2013, 38, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Shahin, M.A.; Hatcher, D.W.; Symons, S.J. Assessment of mildew levels in wheat samples based on spectral characteristics of bulk grains. Qual. Assur. Saf. Crop. Foods 2010, 2, 133–140. [Google Scholar] [CrossRef]
- Zhang, J.C.; Pu, R.L.; Wang, J.H.; Huang, W.J.; Yuan, L.; Luo, J.H. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput. Electron. Agric. 2012, 85, 13–23. [Google Scholar] [CrossRef]
- Knauer, U.; Matros, A.; Petrovic, T.; Zanker, T.; Scott, E.S.; Seiffert, U. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images. Plant Methods 2017, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Shahin, M.A.; Symons, S.J.; Hatcher, D.W. Quantification of Mildew Damage in Soft Red Winter Wheat Based on Spectral Characteristics of Bulk Samples: A Comparison of Visible-Near-Infrared Imaging and Near-Infrared Spectroscopy. Food Bioprocess Technol. 2014, 7, 224–234. [Google Scholar] [CrossRef]
- Tian, Y.W.; Zhang, L. Study on the Methods of Detecting Cucumber Downy Mildew Using Hyperspectral Imaging Technology. Phys. Procedia 2012, 33, 743–750. [Google Scholar] [CrossRef]
- Koprinkova-Hristova, P.; Mladenov, V.; Kasabov, N.K. Artificial Neural Networks. Eur. Urol. 2015, 40, 245. [Google Scholar] [CrossRef]
- Hassoun, M.H.; Intrator, N.; Mckay, S.; Christian, W. Fundamentals of Artificial Neural Networks. Proc. IEEE 2002, 84, 906. [Google Scholar] [CrossRef]
- Jain, A.K.; Mao, J.C.; Mohiuddin, K.M. Artificial Neural Networks: A Tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef]
- Sun, J.; Wei, A.G.; Mao, H.P.; Wu, X.H.; Zhang, X.D.; Gao, H.Y. Discrimination of lettuce leaves’ nitrogen status based on hyperspectral imaging technology and ELM. Trans. Chin. Soc. Agric. Mach. 2014, 45, 272–277. [Google Scholar] [CrossRef]
- Pandey, P.; Ge, Y.; Stoerger, V.; Schnable, J.C. High ThroughputIn vivoAnalysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging. Front. Plant Sci. 2017, 8, 1348. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, S.; Manickavasagan, A.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosyst. Eng. 2008, 101, 50–57. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, F.; He, Y. Identification of coffee bean varieties using hyperspectral imaging: Influence of preprocessing methods and pixel-wise spectra analysis. Sci. Rep. 2018, 8, 2166. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lu, X.Z.; Mao, H.P.; Wu, X.H.; Gao, H.Y. Quantitative Determination of Rice Moisture Based on Hyperspectral Imaging Technology and BCC-LS-SVR Algorithm. J. Food Process Eng. 2017, 40, e12446. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Li, J.T.; Zhu, S.S.; Jiang, S.; Wang, J. Prediction of egg storage time and yolk index based on electronic nose combined with chemometric methods. LWT-Food Sci. Technol. 2017, 82, 369–376. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, H.; Zhang, X.B.; Zhu, L.F.; Zheng, K.F.; Jin, Q.Y.; Zeng, F.P. Estimation of rice neck blasts severity using spectral reflectance based on BP-neural network. Acta Physiol. Plant. 2011, 33, 2461–2466. [Google Scholar] [CrossRef]
- Gutierrez, P.A.; Hervas-Martinez, C.; Martinez-Estudillo, F.J. Logistic regression by means of evolutionary radial basis function neural networks. IEEE Trans. Neural Netw. 2011, 22, 246–263. [Google Scholar] [CrossRef] [PubMed]
- Bazi, Y.; Alajlan, N.; Melgani, F.; Alhichri, H.; Malek, S.; Yager, R.R. Differential Evolution Extreme Learning Machine for the Classification of Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1066–1070. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.J.; He, Y. Dynamic Detection of Fresh Jujube Based on ELM and Visible/Near Infrared Spectra. Spectrosc. Spectr. Anal. 2015, 35, 1870–1874. [Google Scholar] [CrossRef]
- Polat, Ö.; Yıldırım, T. Genetic optimization of GRNN for pattern recognition without feature extraction. Expert Syst. Appl. 2008, 34, 2444–2448. [Google Scholar] [CrossRef]
- Mosier, P.D.; Jurs, P.C. QSAR/QSPR Studies Using Probabilistic Neural Networks and Generalized Regression Neural Networks. J. Chem. Inf. Comput. Sci. 2002, 42, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Valls, J.M.; Aler, R.; Fernández, Ó. Evolving generalized euclidean distances for training RBNN. Comput. Inform. 2007, 26, 33–43. [Google Scholar]
- Umasankar, L.; Kalaiarasi, N. Internal Fault Identification and Classification of Transformer with the Aid of Radial Basis Neural Network (RBNN). Arab. J. Sci. Eng. 2014, 39, 4865–4873. [Google Scholar] [CrossRef]
Number | Optimal Wavelengths (nm) |
---|---|
12 | 1005, 1012, 1116, 1156, 1305, 1332, 1392, 1399, 1517, 1592, 1622, 1646 |
Classification Model | Full Spectra | Optimal Wavelengths | ||||||
---|---|---|---|---|---|---|---|---|
Parameter | Cal a (%) | Pre b (%) | Com c (s) | Parameter | Cal (%) | Pre (%) | Com (s) | |
BPNN | 1 d | 100 | 100 | 893.51 | 2 | 100 | 99.43 | 37.76 |
ENN | 1 d | 100 | 100 | 33,607.31 | 1 | 100 | 99.43 | 614.80 |
ELM | 150 d | 100 | 87.50 | 6.28 | 168 | 100 | 81.25 | 5.07 |
GRNN | 2 e | 71.31 | 55.68 | 10.55 | 1 | 62.50 | 56.82 | 9.08 |
RBNN | 1 e | 100 | 82.96 | 952.21 | 0.33 | 100 | 96.59 | 375.16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Zhu, S.; Lin, F.; Su, Z.; Yuan, K.; Zhao, Y.; He, Y.; Zhang, C. Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks. Sensors 2018, 18, 1944. https://doi.org/10.3390/s18061944
Feng L, Zhu S, Lin F, Su Z, Yuan K, Zhao Y, He Y, Zhang C. Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks. Sensors. 2018; 18(6):1944. https://doi.org/10.3390/s18061944
Chicago/Turabian StyleFeng, Lei, Susu Zhu, Fucheng Lin, Zhenzhu Su, Kangpei Yuan, Yiying Zhao, Yong He, and Chu Zhang. 2018. "Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks" Sensors 18, no. 6: 1944. https://doi.org/10.3390/s18061944
APA StyleFeng, L., Zhu, S., Lin, F., Su, Z., Yuan, K., Zhao, Y., He, Y., & Zhang, C. (2018). Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks. Sensors, 18(6), 1944. https://doi.org/10.3390/s18061944