Next Article in Journal
Directional Paging for 5G Communications Based on Partitioned User ID
Next Article in Special Issue
The SDN Approach for the Aggregation/Disaggregation of Sensor Data
Previous Article in Journal
Performance Evaluation of Relay Selection Schemes in Beacon-Assisted Dual-Hop Cognitive Radio Wireless Sensor Networks under Impact of Hardware Noises
Previous Article in Special Issue
Caching Joint Shortcut Routing to Improve Quality of Service for Information-Centric Networking
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Sensors 2018, 18(6), 1844; https://doi.org/10.3390/s18061844

A Correlation Driven Approach with Edge Services for Predictive Industrial Maintenance

1,2,3,* and 2,3
1
School of Computer Science and Technology, Tianjin University, Tianjin 300350, China
2
Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data, North China University of Technology, Beijing 100144, China
3
Institute of Data Engineering, North China University of Technology, Beijing 100144, China
*
Author to whom correspondence should be addressed.
Received: 29 April 2018 / Revised: 26 May 2018 / Accepted: 31 May 2018 / Published: 5 June 2018
(This article belongs to the Special Issue Internet of Things and Ubiquitous Sensing)
Full-Text   |   PDF [2700 KB, uploaded 6 June 2018]   |  

Abstract

Predictive industrial maintenance promotes proactive scheduling of maintenance to minimize unexpected device anomalies/faults. Almost all current predictive industrial maintenance techniques construct a model based on prior knowledge or data at build-time. However, anomalies/faults will propagate among sensors and devices along correlations hidden among sensors. These correlations can facilitate maintenance. This paper makes an attempt on predicting the anomaly/fault propagation to perform predictive industrial maintenance by considering the correlations among faults. The main challenge is that an anomaly/fault may propagate in multiple ways owing to various correlations. This is called as the uncertainty of anomaly/fault propagation. This present paper proposes a correlation-based event routing approach for predictive industrial maintenance by improving our previous works. Our previous works mapped physical sensors into a soft-ware-defined abstraction, called proactive data service. In the service model, anomalies/faults are encapsulated into events. We also proposed a service hyperlink model to encapsulate the correlations among anomalies/faults. This paper maps the anomalies/faults propagation into event routing and proposes a heuristic algorithm based on service hyperlinks to route events among services. The experiment results show that, our approach can reach 100% precision and 88.89% recall at most. View Full-Text
Keywords: sensor data; event correlations; proactive data service; service hyperlink; edge computing sensor data; event correlations; proactive data service; service hyperlink; edge computing
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Zhu, M.; Liu, C. A Correlation Driven Approach with Edge Services for Predictive Industrial Maintenance. Sensors 2018, 18, 1844.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top