Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy
Abstract
:1. Introduction
2. Basic Principles of DA-ATLAS Gas Sensors
Basic DA-ATLAS Gas Sensor with Two Optical Channels
3. Tailoring an Algorithm for Enhancement of the Sensor Sensitivity to the Gas Concentration
3.1. Generating Functions
3.2. Selection of the Optimum Generating Function
4. Proof of Principle Gas Sensor Setup Based on DA-ATLAS
4.1. Characterization of the Laser Line Tuning and Simulation of the Sensor Output
4.2. Simulated Generating Functions for the Experimental Sensor Setup
4.3. Experimental Measurements
4.4. Experimental Sensitivity
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fetzer, G.J.; Pittner, A.S.; Ryder, W.L.; Brown, D.A. Tunable diode laser absorption spectroscopy in coiled hollow optical waveguides. Appl. Opt. 2002, 41, 3613–3621. [Google Scholar] [CrossRef] [PubMed]
- Krzempek, K.; Lewicki, R.; Nähle, L.; Fischer, M.; Koeth, J.; Belahsene, S.; Rouillard, Y.; Worschech, L.; Tittel, F.K. Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane. Appl. Phys. B 2012, 106, 251–255. [Google Scholar] [CrossRef]
- Vargas-Rodriguez, E.; Guzman-Chavez, A.D.; Raja-Ibrahim, R.K.; Cardoso-Lozano, L.E. Gas Sensor Design Based on a Line Locked Tunable Fiber Laser and the Dual Path Correlation Spectroscopy Method. Appl. Sci. 2017, 7, 958. [Google Scholar] [CrossRef]
- Bolshov, M.A.; Kuritsyn, Y.A.; Liger, V.V.; Mironenko, V.R.; Leonov, S.B.; Yarantsev, D.A. Measurements of the temperature and water vapor concentration in a hot zone by tunable diode laser absorption spectrometry. Appl. Phys. B 2010, 100, 397–407. [Google Scholar] [CrossRef]
- Sun, K.; Chao, X.; Sur, R.; Goldenstein, C.S.; Jeffries, J.B.; Hanson, R.K. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers. Meas. Sci. Technol. 2013, 24, 125203. [Google Scholar] [CrossRef]
- Xia, H.; Liu, W.; Zhang, Y.; Kan, R.; Wang, M.; He, Y.; Cui, Y.; Ruan, J.; Geng, H. An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy. Chin. Opt. Lett. 2008, 6, 437–440. [Google Scholar] [CrossRef]
- Silveira, J.P.; Grasdepot, F. CH4 optical sensor using a 1.31 μm DFB laser diode. Sens. Actuators B 1995, 25, 603–606. [Google Scholar] [CrossRef]
- Witzel, O.; Klein, A.; Meffert, C.; Wagner, S.; Kaiser, S.; Schulz, C.; Ebert, V. VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Exp. 2013, 21, 19951–19965. [Google Scholar] [CrossRef] [PubMed]
- Kasyutich, V.L.; Martin, P.A. A CO2 sensor based upon a continuous-wave thermoelectrically-cooled quantum cascade laser. Sens. Actuators B Chem. 2011, 157, 635–640. [Google Scholar] [CrossRef]
- Dong, L.; Yin, W.; Ma, W.; Zhang, L.; Jia, S. High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity. Sens. Actuators B 2007, 127, 350–357. [Google Scholar] [CrossRef]
- Webber, M.E.; Baer, D.S.; Hanson, R.K. Ammonia monitoring near 1.5 μm with diode-laser absorption sensors. Appl. Opt. 2001, 40, 2031–2042. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wei, Y.; Song, G.; Hu, B.; Li, L.; Jin, G.; Wang, J.; Li, Y.; Song, C.; Shi, Z.; et al. Fibre optic sensors for coal mine hazard detection. Measurement 2018, 124, 211–223. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Liu, T.; Li, Y.; Wei, Y.; Zhang, T.; Shang, Y. Application in Coal Mine of Fiber Methane Monitoring System Based on Spectrum Absorption. Procedia Eng. 2011, 26, 2152–2156. [Google Scholar] [CrossRef]
- Webber, M.E.; Claps, R.; Englich, F.V.; Tittel, F.K.; Jeffries, J.B.; Hanson, R.K. Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases. Appl. Opt. 2001, 40, 4395–4403. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Hayes, K.; Shah, A.; Rosenfeld, A. Texture Coarseness: Further Experiments. IEEE IEEE Trans. Syst. Man Cybern. 1974, SMC-4, 467–474. [Google Scholar]
- Weszka, J.S.; Dyer, C.R.; Rosenfeld, A. A Comparative Study of Texture Measures for Terrain Classification. IEEE Trans. Syst. Man Cybern. 1976, SMC-6, 269–285. [Google Scholar] [CrossRef]
- Tamura, H.; Mori, S.; Yamawaki, T. Textural Features Corresponding to Visual Perception. IEEE Trans. Syst. Man Cybern. 1978, 8, 460–473. [Google Scholar] [CrossRef]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Unser, M. Sum and Difference Histograms for Texture Classification. IEEE Trans. Patt. Anal. Mach. Intell. 1986, PAMI-8, 118–125. [Google Scholar] [CrossRef]
- Rothman, L.S.; Jacquemart, D.; Barbe, A.; Chris Benner, D.; Birk, M.; Brown, L.R.; Carleer, M.R.; Chackerian, J.C.; Chance, K.; Coudert, L.H.; et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2005, 96, 139–204. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Chang, J.; Huang, Q.; Wang, Q.; Liu, Y.; Qin, Z. Water vapor concentration measurements using TDALS with wavelength modulation spectroscopy at varying pressures. Sens. Rev. 2017, 37, 172–179. [Google Scholar] [CrossRef]
- Goody, R. Cross-Correlating Spectrometer. J. Opt. Soc. Am. 1968, 58, 900–908. [Google Scholar] [CrossRef]
- Johnston, S.F. Gas monitors employing infrared LEDs. Meas. Sci. Technol. 1992, 3, 191–195. [Google Scholar] [CrossRef]
- Gallegos-Arellano, E.; Vargas-Rodriguez, E.; Guzman-Chavez, A.D.; Cano-Contreras, M.; Cruz, J.L.; Raja-Ibrahim, R.K. Finely tunable laser based on a bulk silicon wafer for gas sensing applications. Laser Phys. Lett. 2016, 13, 065102. [Google Scholar] [CrossRef] [Green Version]
- Linford, M.R. The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) Functions Used in Peak Fitting XPS Narrow Scans, and an Introduction to the Impulse Function. Vac. Technol. Coat. 2014, 15, 27–34. [Google Scholar]
Generating Function | k | p5 | p4 | p3 | p2 | p1 | p0 |
---|---|---|---|---|---|---|---|
2.6 | |||||||
4.6 | 0.3209 | ||||||
2.9 | |||||||
4.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Rodriguez, E.; Guzman-Chavez, A.D.; Baeza-Serrato, R. Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy. Sensors 2018, 18, 1808. https://doi.org/10.3390/s18061808
Vargas-Rodriguez E, Guzman-Chavez AD, Baeza-Serrato R. Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy. Sensors. 2018; 18(6):1808. https://doi.org/10.3390/s18061808
Chicago/Turabian StyleVargas-Rodriguez, Everardo, Ana Dinora Guzman-Chavez, and Roberto Baeza-Serrato. 2018. "Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy" Sensors 18, no. 6: 1808. https://doi.org/10.3390/s18061808
APA StyleVargas-Rodriguez, E., Guzman-Chavez, A. D., & Baeza-Serrato, R. (2018). Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy. Sensors, 18(6), 1808. https://doi.org/10.3390/s18061808