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Abstract: In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration
sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method
is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi
constant over a much larger dynamic range compared with that obtained by typical methods based on
a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or
RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a
quasi linear relationship between the concentration and some specific statistics features over a wider
dynamic range. In order to test the viability of our algorithm, a basic C2H2 sensor based on DA-ATLAS
was implemented, and its experimental measurements support the simulated results provided by
our algorithm.
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1. Introduction

Gas sensors based on Tunable Laser Absorption Spectroscopy (TLAS) are widely used due to
their high sensitivity and selectivity. Moreover, there currently exists a wide range of laser options
to implement this application. Generally, TLAS can be performed in two different modes: Line
Locked Tunable Laser Absorption Spectroscopy (LL-TLAS) or Analytical Tunable Laser Absorption
Spectroscopy (ATLAS) [1]. In the LL-TLAS mode, the emission is ideally matched with the central
wavelength of the absorption line, thereby the overall laser intensity observed by the detector will
be affected as the gas concentration is varied [1–3]. In the ATLAS mode, the laser line emission is
scanned over the spectral region where the molecule absorbs [4–9]. Furthermore, this scanning task
can be carried out by two different techniques: Direct Absorption (DA-ATLAS) and Wavelength
Modulation (WM-ATLAS) [4]. In the DA-ATLAS case, the laser wavelength is tuned over the
spectral region where the gas absorption line occurs; therefore, based on the Beer–Lambert law,
the transition line shape and its integrated absorbance can be determined straightforwardly [5]. Here,
the laser wavelength is driven typically with a saw-tooth or triangular waveform of a certain frequency.
In the WM-ATLAS case, the laser wavelength is also driven with a typical saw-tooth or triangular
waveform, but this is also modulated with another faster signal waveform [4,5]. Usually, sensors based
on the WM-ATLAS technique have a minimum detectable absorbance in the order of 10−6; this is
quite superior to that typically achieved by sensors based on DA-ATLAS, which is in the order of
10−3 [10]. For instance, the sensor based on WM-ATLAS designed by [6] was able to simultaneously
detect CH4 and H2S with a minimum detection limit of 1.1 ppm m and 15 ppm m, respectively.
An example of a typical sensor based on DA-ATLAS is the one presented by [7], which can detect a
minimum concentration of 0.2% of CH4. One disadvantage of WM-ATLAS sensors is that their highest
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detectable concentration typically lies within a narrow concentration range (<1%), while sensors based
on DA-ATLAS usually have a larger dynamic range [10]. Furthermore, as in the ATLAS sensors,
the laser line emission is tuned, therefore these will generate an output signal in the time domain.
From this signal output, different spectroscopic parameters can be determined depending on the
sensor configuration. For instance, there are algorithms in which the measured sensor signals are
fitted with Voigt [5,8,11], Lorentzian [9], Voigt-Lorentzian or Voigt-Gaussian functions [4] in order to
determine one or more spectroscopic parameters such as the line strength, the line position and the
lower-state energy of one or multiple absorption lines [11]. However, for some applications, it is only
necessary to determine the gas concentration at ambient temperature and at atmospheric pressure.
For instance, for coal mine hazard detection applications, CH4 sensors with a dynamic range from
0–100% are of interest [12,13], as well as, for this application, sensors to monitor CO, O2, C2H2 and CO2

are required [12]. Here, for gas concentration sensors, simple algorithms can be applied to determine
the concentration from the output signal. For example, a relationship can be established between the
concentration and one statistics feature of the signal generated by the sensor. Some commonly-used
statistics features are the peak amplitude [14], the area under the curve [10] and the Root-Mean Square
(RMS) [7]. These kinds of relationships are easy to compute, and therefore, the gas concentration can
be determined straightforwardly. However, sensors based on these algorithms commonly have a
limited dynamic range since most of these statistics features (peak amplitude, area and RMS) will
linearly increase with the concentration up to a certain level. Afterwards, the statistics feature will
increase slowly with the concentration due to the effect of saturation in the gas cell. In this range,
the relationship between the statistics feature and the concentration will have a nonlinear behavior.
Consequently, the sensitivity to the gas concentration will have a quasi constant trend for a limited
dynamic range, and afterwards, it will drops rapidly with the concentration. Different optimized
designs have been proposed to widen the dynamic range while keeping a high sensitivity. For instance,
the sensor developed by [10] reached a dynamic range of 0.005–50% CH4, and in this particular case,
the concentration was determined by means of the relationship between the area under the curve and
the concentration. Hence, there are several gas sensors based on the DA-ATLAS technique for which
designers have improved the minimum detectable absorption and also have increased the sensitivity
over a certain dynamic range. Some of these enhancements have been based on improving the optical
arrangements, optimizing the optical component characteristics and the electronic stages used to
recover and to process the signals.

In this paper, a tailored algorithm to widen the dynamic range of sensors based on DA-ATLAS,
is presented. Moreover, based on the proposed algorithm, it is shown that it is possible to establish a
quasi linear relationship between a tailored statistics feature and the concentration within the wider
dynamic range. This consequently allowed us to get a high and quasi constant sensitivity within
this concentration range. Furthermore, this algorithm can be applied to currently-designed sensors
since it is only necessary to change the way in which the sensor signal output is processed. This new
algorithm is based on the combination of different statistical features of the sensor signal output instead
to consider just one statistics feature (area, peak amplitude, RMS). This type of statistical analysis is
commonly used in digital image processing for texture measurements [15–20]. Finally, in order to
support the general performance of the algorithm, some experimental results are presented.

2. Basic Principles of DA-ATLAS Gas Sensors

The principle of DA-ATLAS sensing is based on the amount of light absorbed when it passes
through a gas sample. Hence, it is necessary to measure the absorption per each wavelength. Therefore,
the laser is tuned over a certain spectral range to resolve the absorption line. The transmitted light
intensity through a gas cell can be described by the Beer–Lambert law, which is given as:

I (λ, C, l) = I0 (λ) exp (−Clα (λ)) , (1)
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where I0 (λ) is the laser intensity before the gas cell, C is the gas concentration, l is the gas cell
pathlength and α (λ) is the monochromatic absorption coefficient. The latter was calculated by using
the parameter of the HITRAN spectroscopy database [21]. Moreover, the proportion of light absorbed
by the gas sample through the cell can be expressed by:

a (λ, C, l) = 1− I (λ, C, l)
I0 (λ)

= 1− exp (−Clα (λ)) . (2)

Simulated absorption profiles of a (C, l, λ) for different concentration levels and considering
that the laser is scanned from 1532.61–1533.04 nm, where one ro-vibrational line of C2H2 occurs,
are shown in Figure 1a. Here, it can be observed that the peak amplitude ap = max(a (C, l, λ)) rapidly
increases with the concentration. However, how fast the ap reaches the maximum value will depend
not only on the sample concentration, but also on the gas cell pathlength. For instance, in Figure 1b,
the peak amplitude of the absorption for different concentrations and cell lengths is shown. Here,
it can be observed that the longer the cell pathlength, the more rapidly the signal peak amplitude
will reach one. Besides, as it approaches one, it becomes almost flat for the rest of the concentration
range. Consequently, if the concentration is determined based on the peak amplitude, it is possible
to optimize the sensor by selecting the gas cell pathlength in order to have either a low and quasi
constant sensitivity over the wide concentration region or have a quite large sensitivity for a narrow
range of low concentration levels, since after a certain concentration level, the sensitivity will tend
to zero (Figure 1c). In this case, the sensitivity was calculated as dap/dC. Hence, it can be useful to
have a different option to analyze and process these absorption profiles, which are the sensor output,
to determine the concentration with higher precision, especially in the region where the sensitivity is
close to zero. Here, we propose a new algorithm, which helps to conserve the high sensitivity over a
much wider dynamic range and also provides a quasi constant sensitivity behavior within this wider
range. Additionally, it allows us to have a quasi constant sensitivity over the wide measurement range.
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Figure 1. (a) Simulated C2H2 absorption spectra considering a pathlength of 10 cm and different
concentrations; here, we considered that the laser is scanned over the absorption line; (b) peak
absorption as a function of the concentration considering different pathlengths; (c) sensitivity of
the absorption peaks as a function of the C2H2 concentration.

Basic DA-ATLAS Gas Sensor with Two Optical Channels

There exist different sensor configurations to perform the sensing based on DA-ATLAS mode.
One of these configurations, which is very popular, is that based on dual channels [3–5,7,22].
In this configuration, two channels are ideally formed by equally splitting the light beam before
it enters the gas cell. In the measurement channel, the beam passes through the gas cell, and at the
output, it is recorded by one optical detector. In the reference channel, the beam does not pass by the
measurement cell, and therefore, it directly arrives at another detector. In Figure 2 is shown a general
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block diagram of a dual channel sensing setup. One advantage of this configuration is that the signals
of the measurement and the reference channels can be either subtracted, divided or mathematically
combined in order to calculate the transmission, the visibility or the depth of modulation (DM).
The DM is an interesting measurement since it is robust to fluctuations of the light source [23,24], and it
can be described as:

DM (C, l, λ (t))=
PR (λ (t))− gPM (C, l, λ (t))
PR (λ (t)) + gPM (C, l, λ (t))

, (3)

where PR (λ (t)) and PM (C, l, λ (t)) are the power registered by the reference and the measurement
detectors respectively when the laser wavelength is at position λ (t). Here, as the laser wavelength
will be scanned periodically, therefore it can be represented as a function of time (t). Moreover, DM is
unitless, and in our case, g is a proportionality constant to take into account losses or an unbalanced
beam splitting ratio, ideally g = 1. In a practical way, g can be calculated as the ratio between the
signals provided by the reference and the measurement detectors when the target gas concentration is
0%. Furthermore, Equation (3) demonstrates the advantage of using the two-channel setup, since any
source intensity fluctuation will affect both channels with the same magnitude, and therefore, their
effects will be minimized when the DM is computed.

Tunable Fiber
Laser

Beam-
splitter

Gas Cell P
M

P
R D

M

Port 1

Port 2

Depth of
Modulation

Driver

Figure 2. Block diagram of a Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS)
sensor with two optical channels.

3. Tailoring an Algorithm for Enhancement of the Sensor Sensitivity to the Gas Concentration

In the DA-ATLAS technique, the laser is tuned in one direction to scan the spectral region where
an absorption line of the target molecule occurs, and afterwards, it is returned to its initial position
(Figure 3a). This spectral scan can be driven by using, for instance, a saw tooth or a triangular waveform.
As an example and in order to explain our algorithm methodology, let us consider that a C2H2 sensor
is going to be designed, targeting the absorption line occurring at 1532.8302 nm with a 10-cm gas
cell pathlength. Moreover, let us to consider that the laser is tuned within the 1532.61–1533.04 nm
range and it is driven with a triangular waveform (Figure 3a). Here, the time duration of the tuning
cycle period (T0) will depend on the frequency at which the laser is tuned. Hence, as the laser is
periodically scanned over time, therefore the DM of the output will have a particular waveform in
the time domain, as is shown in Figure 3b. For this figure, different concentrations of C2H2 were
considered, and it can be appreciated how the peak amplitude of the signal increases with the gas
concentration. Furthermore, the DM signal was normalized to 255 considering the standard gray tone
scale of image processing. From this figure, it also can be observed that different statistical features of
the sensor signal output, such as the peak to peak amplitude, the mean, the RMS and the DC level,
are affected by the concentration. Therefore, if the gas concentration is determined based only on the
peak amplitude of the signal, more valuable information is wasted. Thus, it is possible to build new
algorithms to extract additional information of the statistics features of the sensor output waveforms
in order to enhance some sensor characteristics such as the sensitivity and the gas concentration
dynamic range.
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Figure 3. (a) Laser wavelength as a function of time; (b) depth of modulation as a function of time,
considering different concentrations of C2H2 and l = 10 cm.

The algorithm proposed in this work is based on the analysis of the sensor signal output
waveforms. Here, for simplicity and normalization purposes, we will consider the number of samples
(n) forming a laser tuning cycle. In this way, N will be the total number of samples composing each
tuning cycle period (T0), and it also represents the number of scanning steps considered to complete
one laser tuning cycle (Figure 3). The general flow diagram of the algorithm proposed in this work is
presented in Figure 4. This steps should be performed for designing a particular gas sensor.

Acquisition of the
sensor signal

output waveform

Selection of a
generating function

f C
k
( )
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Select a valuek
to simulate the

generating  function
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behavior?

Select a different
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Figure 4. Flow diagram of the proposed algorithm.

According to the flow diagram for implementing the new algorithm, it is necessary to build our
generating functions ( f k(C)), which are based on some statistical features of the sensor signal output,
such as the mean (m1), the peak amplitude of the signal (A), the entropy (h), the standard deviation
(σ) and the k-th momentum over the origin (mk). These statistics features can be expressed by the
following Equations:

mk (C) =
N

∑
j=1

[DM (C, j, )]k

N
, (4)

σ (C) =
N

∑
j=1

[
DM (C, j)−m1 (C)

]2
N

, (5)

h (C) =
N

∑
j=1

DM (C, j) ln [DM (C, j) + 1]
N

, (6)

A (C) = max (DM (C, j)) . (7)

In Figure 5, the A, σ, h and m1–m5 features from DM waveforms as a function of the C2H2

concentration are shown. From Figure 5a, it can be observed that the parameter A is the one that most
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rapidly increases with low concentration levels (0–20%). However for higher concentration levels
(20–100%), A becomes quite flat meaning that it has become insensitive to concentration changes.
Moreover, it can be appreciated that for higher concentration levels, the most sensitive statistics feature
is the entropy (h). Furthermore, it also can be appreciated that the mean and the σ present a lower
sensitivity to the gas concentration. Finally, it can be appreciated in Figure 5b–e that k-th moments
over the origin are quite sensitive for higher concentrations; however, these have the disadvantage
that for low concentration levels, their response is close to zero. For instance, in Figure 5e, it can be
observed that below a 20% C2H2 concentration, m5 is practically zero and after this level presents a
high slope for the range from 20–100%. Therefore, it can be concluded from this first analysis that
some statistics features are quite sensitive to low concentrations levels (A and h) and others to high
levels (mk).
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Figure 5. Statistics features of the sensor output waveforms as a function of C2H2. (a) the mean (m1),
the standard deviation (σ), the entropy (h) and the peak amplitude (A) of DM are shown; (b–e) some
k-th moments over the origin (mk) of DM are presented.

3.1. Generating Functions

In order to take advantage of the fact that each statistics feature is more sensitive to different
concentration intervals, different ways to combine the k-th moment (k > 1), A, σ, h and m1 were
analyzed. In this way several new functions can be built. From these new functions, we selected one
set, called here generating functions, which can be expressed as:

f k
m =

√
(m1)

2
+

(
mk

wk−1

)2

, (8)

f k
h =

√
h2 +

(
mk

wk−1

)2

, (9)

f k
σ =

√
σ2 +

(
mk

wk−1

)2

, (10)
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f k
A =

√
A2 +

(
mk

wk−1

)2

, (11)

where w is a weighting constant to scale the magnitude of the high order moments. In our case,
w was considered as the maximum of m1 within the measurement range, which corresponds to the
C2H2 concentration of 100% (w = m1(100%)). In Figure 6, it can be observed that the slope of all the
generating functions becomes larger the higher the order of the moment about the origin is. Moreover,
it also can be appreciated that these functions will have a well-defined inflection point occurring when
the k-th moment starts to govern the behavior of the generating function.
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Figure 6. Generating functions (a) f k
m; (b) f k

h ; (c) f k
σ; and (d) f k

A versus the C2H2 concentration. In all cases
we considered k as 2, 3, 4 and 5.

3.2. Selection of the Optimum Generating Function

As there are infinite possible k values, it is necessary to select only one for each generating function
(Equations (8)–(11)). In our case, we decided to look for the k values for which the built generating
functions have a quasi linear response to the concentration. Moreover, in general terms, the sensitivity
can be calculated as the derivative of the generating function with respect to the gas concentration(

d f k/dC
)

. Since we are looking for functions with quasi linear response to the concentration (Figure 7),
therefore the sensitivity must have a quasi constant behavior within the measurement range. It is
important to point out that the k value will not necessarily be the same for each generating function.
For instance, for our design example, we found that the optimal k was within the range of 2.0–3.0,
3.5–4.5, 2.5–3.5 and 3.5–4.5 for f k

m, f k
h , f k

σ and f k
A, respectively. In Figures 7 and 8, the generating

functions ( f k) for these k intervals, in steps of 0.2, and their corresponding sensitivities are shown,
respectively. From Figure 8, it can be observed that the sensitivity of the four generating functions is
improved with these k values since these are now much larger than zero and have a quasi constant
profile for high concentrations. This shows that by using these algorithms, it is possible to enhance
the sensitivity for higher concentrations, which is not possible when the concentration is determined
based only on either the peak amplitude, the mean, the RMS or the standard deviation. After we find a
range of k values for which the generation functions have a quasi linear behavior, just one of these k
values must be selected for each function. For our example, we determined as the optimum k value
2.2, 4.2, 2.9 and 4.1 for f k

m, f k
h , f k

σ and f k
A, respectively. In Figure 9a–d, it can be appreciated that each
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optimal generating function has a very linear behavior compared to that obtained when the A, m1,
σ or h are computed (Figure 5a). Moreover, these functions present some inflection points due to the
combination of different functions and can be precisely fitted with a polynomial.
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Figure 7. Generating functions (a) f k
m; (b) f k

h ; (c) f k
σ ; and (d) f k

A versus the C2H2 concentration for an
interval of k values that generate functions with a quasi-linear behavior.
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Figure 8. Sensitivities of the generating functions (a) f k
m; (b) f k

h ; (c) f k
σ and (d) f k

A versus the C2H2

concentration for an interval of k values that generate functions with a quasi linear behavior

In this form, the gas concentration can be calculated by using the expression Cr
f = ∑r

n=0 pn( f k)n,
where pn are the polynomial coefficients and r is the degree of the polynomial (Figure 9a–d).
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In a practical sensor design, the algorithm should be performed only one time to determine the
generating function and its optimal k value. Afterwards, it is only necessary to calculate the generating
function based on the sensor output waveform and from this result determine the gas concentration by
using the polynomial coefficients. Additionally, the sensitivity for each one of the optimal generating
functions is presented in Figure 9e. Here, it can be observed that all of them have an enhanced
sensitivity for a higher concentration than obtained with the peak amplitude A of the sensor signal
output (DM). Moreover, from the sensitivity results, it can be observed that f k

h and f k
A have a larger

sensitivity for all the measurement range (0–100%); however, for low concentrations, f k
h shows a lower

sensitivity than that obtained with f k
A. To the contrary, f k

A has a high sensitivity to low concentrations
similar to that obtained when A is used, but due to the k-moment contribution, it keeps its high
sensitivity for the full measurement range. This point demonstrates that the measurement range and
the sensitivity of typical gas concentration sensors based on DA-ATLAS can be enhanced by using this
kind of tailored algorithm.
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Figure 9. Simulated optimal generating functions (a) f 2.2
m ; (b) f 4.2

h ; (c) f 2.9
σ ; and (d) f 4.1

A and their
corresponding polynomial fits; (e) C2H2 sensitivities of each one of the optimal generating functions
and of that obtained when only the peak amplitude of DM is considered.

4. Proof of Principle Gas Sensor Setup Based on DA-ATLAS

In order to test the viability of the tailored algorithms, particularly the expansion of the dynamic
range and the enhancement of the sensitivity, a basic gas C2H2 sensor was implemented. It was
based on a ring fiber tunable laser (Figure 10). Here, the light of a pigtailed diode laser emitting
at λ = 980 nm and delivering a maximum output power of 300 mW was coupled to a Wavelength
Division Multiplexer (WDM, Qphotonics QFBGLD-980-200) to pump an Erbium-Doped Fiber (EDF,
Newport F-EDF-T3) of 3.4 m in length. Afterwards, the luminescence generated by the EDF traveled
throughout the circulator (Thorlabs 6015-3) from Port 1 to Port 2 where a silicon wafer is placed. Port 3
of the circulator was spliced to a 50/50 coupler (Thorlabs 10202 A-50) in order to split the reflected
interference spectrum of the wafer into two outputs. One of the 50% outputs was launched to a
Variable Optical Attenuator (VOA), which was used to change the spectral gain of the laser to avoid
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laser emissions in the 1550-nm region. Finally, the VOA was spliced to the WDM-1550-nm port in
order to close the ring cavity. The other 50% output of the reflected interference spectrum of the Si
wafer was divided by a 50/50 fiber coupler, to form the measurement and the reference channels of the
sensor. Here, the laser signal was monitored by using an Optical Spectrum Analyzer (OSA, Yokogawa
AQ6370C) with a resolution of 0.02 nm. In this arrangement, a 4-nm laser tuning range without mode
hopping was achieved by varying the wafer temperature with the Thermo Electric Cooler (TEC). Here,
in order to have repetitive tuning cycles, the laser line wavelength was tuned over time by driving the
TEC with a Proportional-Integral-Derivative (PID) controller, which was implemented with LabVIEW
software (PC DAQ). In this laser setup, a bulk silicon wafer of 85 µm in thickness was used as a
spectral selective filter [25]. Hence, the wafer acts as a Fabry–Perot Interferometer (FPI), and therefore,
its reflection pattern can be shifted by varying the refractive index of silicon. This can be achieved by
taking advantage of the thermo-optical properties of silicon [25]. Consequently, this allowed us to
tune the laser emission wavelength to scan one ro-vibrational absorption line of the target molecule.
In our case, we tuned the laser emission over the ro-vibrational line of C2H2 occurring at 1532.8302 nm
at atmospheric pressure [21]. For the experiments carried out in this work, the VOA remained fixed.
Here, the light beam of the reference channel is monitored with the PR optical detector, while the
measurement channel is monitored with the PM detector. These signals are recovered with a Data
Acquisition System (DAQ) and processed with a Personal Computer (PC). This stage also calculates
the DM signal, which is the main output signal of our sensor.

1
2
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980/1550nm

EDF

Coupler

50

50

VOA

Coupler
50

50

Gas Cell

Diode Laser
980 nm

P
R

P
M

Temperature
Cycle

PC
DAQ

TEC

Si
wafer

D
M

Laser
Output

OSA

Figure 10. DA-ATLAS dual channel gas sensor setup. WDM, Wavelength Division Multiplexer; VOA,
Variable Optical Attenuator; EDF, Erbium-Doped Fiber; TEC, Thermo Electric Cooler; OSA, Optical
Spectrum Analyzer.

4.1. Characterization of the Laser Line Tuning and Simulation of the Sensor Output

In order to be able to simulate the output waveform that will generate our gas sensor, we firstly
characterized the laser line emission profile and its tuning behavior over time. The measured laser line
profile (LM) is shown in Figure 11a. It was recorded with an optical spectrum analyzer (Yokowaga
AQ6370C) with a resolution of 20 pm. This laser emission has a Full Width at Half Maximum (FWHM)
of approximately 15 pm, and it was well fitted with a Gaussian Lorentzian Sum (GLS) function
(Figure 11a), which is defined as [26]:

LF (λ) =
1− q

(ρ/2)
√

2π
exp

[
− (λ− λ0)

2

2ρ2

]
+

q
π

ρ

ρ2 + (λ− λ0, )2 , (12)

where q = 0.4 and ρ = FWMH/2. Moreover, by varying the TEC’s temperature from 287.9–292.0 K,
it was possible to tune the laser emission from 1532.785–1533.000 nm (∆λ = 0.215 nm), as shown
in (Figure 11b). Here, the laser line wavelength is scanned periodically over time. In our case,
we developed a PID controller to drive the TEC’s voltage supply and to guarantee that the temperature
remains over the wavelength scanning range. In this case, we did not optimize the PID in order to
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drive the TEC’s temperature with a linear behavior as when it is driven with sawtooth or triangular
waveforms (Figure 3). In our TEC’s PID controller software program, we set the levels of temperature
(Tosc), and the laser emission was tuned following the function shown in Figure 11b. Moreover,
by varying in this way the temperature of the Si wafer, the laser line was scanned almost completely
over the ro-vibrational absorption line, as can be observed in Figure 11c. Finally, by using the simulated
laser line emission and its tuning characterization, the DM for different concentrations was simulated,
and the results are shown in Figure 11d; here, DM waveforms were normalized to 255.
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Figure 11. (a) Measured and fitted laser line emission; (b) laser wavelength as a function of the time
as a consequence of the variation of the Si wafer temperature; (c) simulated transmission of C2H2

when C = 50% and the initial and final positions of the laser emission tuning range; (d) simulated DM

waveforms as a function of time for different C2H2 concentrations.

4.2. Simulated Generating Functions for the Experimental Sensor Setup

Once the DM signal was simulated, we proceeded to calculate the generating functions and to
look for the optimal k value that provided the most constant sensitivity for each one. Firstly, the mk,
h, σ and A statistics features were calculated (Figure 12). Afterwards, based on Equations (8)–(11),
the generating functions were calculated for some k values for which these functions provide the
most constant sensitivity over a wider dynamic range. In Figure 13, some examples of functions
obtained with some particular values of k are shown. Moreover, the sensitivity that can be achieved by
using these functions is shown in Figure 14. Afterwards, we proceeded to select one k value for each
generating function of this experimental case, which were 2.6, 4.6, 2.6 and 4.8 for f k

m, f k
h , f k

σ and f k
A,

respectively (Figure 15). Moreover, their sensitivities are shown in Figure 14e. From this figure, it can
be observed that f k

h and f k
A have a greater sensitivity for high C2H2 concentrations and also that the f k

A
function has a greater sensitivity for low concentration levels. Therefore, we considered that f 4.8

A is
the best option to be used for this gas sensor design since it has a larger concentration over the full
concentration range. Finally, these optimal generating functions were fitted with a polynomial of the
form C5

f = ∑5
n=0 pn( f k)n to determine the concentration, and the pn constants are listed in Table 1.
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Figure 12. Simulated statistics features of our experimental gas sensor setup. (a) the mean (m1),
the standard deviation (σ), the entropy (h) and the peak amplitude (A) of DM are shown; (b–e) some
k-th moments over the origin (mk) of DM are presented
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Figure 13. Simulated response of generating functions (a) f k
m; (b) f k

h ; (c) f k
σ ; and (d) f k

A versus the C2H2

concentration for the experimental sensor setup. Here are shown only some intervals of k values for
which generating functions can have a quasi linear behavior.



Sensors 2018, 18, 1808 13 of 17

0 20 40 60 80 100

C
2
H

2
 concentration (%)

0

2

4

 d
f m  

k
/d

C
 

k=2.0 k=2.2 k=2.4

k=2.6 k=2.8 k=3.0

0 20 40 60 80 100

C
2
H

2
 concentration (%)

0

4

8

12

16

20

 d
f h  

k
/d

C
 

k=3.5 k=3.7 k=3.9

k=4.1 k=4.3 k=4.5

0 20 40 60 80 100

C
2
H

2
 concentration (%)

0

3

6

 d
f σ  

k
/d

C
 

k=2.5 k=2.7 k=2.9

k=3.1 k=3.3 k=3.5

0 20 40 60 80 100

C
2
H

2
 concentration (%)

0

4

8

12

16

 d
f A  

k
/d

C
 

k=3.5 k=3.7 k=3.9

k=4.1 k=4.3 k=4.5

(a) (b)

(c) (d) .

Figure 14. Sensitivity of the generating functions (a) f k
m; (b) f k

h ; (c) f k
σ and (d) f k

A versus the C2H2

concentration that are shown in Figure 13. Here it shown an interval of k values that generate a quasi
constant sensitivity.
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Figure 15. Simulated optimal generating functions (a) f k
m; (b) f k
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σ and (d) f k

A for our experimental
setup as a function of the C2H2 concentration; (e) simulated sensitivity of the optimal f k functions.
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Table 1. Polynomial coefficients of the optimal generating functions.

Generating Function k p5 × 10−11 p4 × 10−9 p3 × 10−5 p2 × 10−3 p1 × 10−1 p0

f k
m 2.6 7.3252 −65.3400 2.207 −3.013 4.8895 −0.2699

f k
h 4.6 0.0001 −0.0539 0.014 −0.105 1.2107 0.3209

f k
σ 2.9 −66.7622 169.8169 −1.542 0.282 3.6539 −0.1325

f k
A 4.8 −0.0330 0.8222 −0.0689 0.204 0.9397 −0.6466

4.3. Experimental Measurements

Now, in order to support our simulated results, we performed some measurements with different
C2H2 concentrations. The measured DM waveforms for each concentration are shown in Figure 16a
(see Table 1). Afterwards, for each one of these DM signals, the optimal generating functions f 2.6

m , f 4.6
h ,

f 2.9
σ and f 4.8

A were calculated.
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Figure 16. (a) Measured sensor output waveforms for different C2H2 concentrations; (b–f) simulated
(S) and calculated statistics features obtained from experimental waveforms (E).

Additionally, as an example of the typical results expected when the concentration is determined
based on a single statistics feature, the peak amplitude of the DM waveforms was calculated.
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These results are shown in Figure 16b–e where it can be observed that all have the same tendency
as the simulated results. In each graph is shown the error between the measured and the simulated
results. It can be expressed as δ = | f k

E − f k
S)/ f k

S | × 100%. Here, let us point out that we consider
that these errors are mainly due to systematic causes, and therefore, these can be reduced by further
optimizing the sensing arrangement stages. In practice, after these generating function results are
obtained, the C2H2 concentration can be determined by means of the polynomial coefficients listed in
Table 1.

4.4. Experimental Sensitivity

One of the main points of the algorithm is to enhance the sensitivity over a larger dynamic range.
As an example, the sensitivity obtained based on a single statistics feature (peak amplitude and mean)
and that obtained with some generating functions ( f 4.8

A and f 2.6
m ) are shown in Figure 17. For this case,

the approximate sensitivity values for the experimental measurements E were calculated by using
the relationship ∆ f /∆(Cs) = [ f (Cs)− f (Cs−1)]/(Cs − Cs−1). From Figure 17, it can be noted that the
tailored functions provide a better sensitivity level over a much wider dynamic range. For instance,
f 4.8
A has a similar sensitivity to that of A within the concentration range from 0–17%, but after this

level, the sensitivity obtained with the generating function is considerably larger. Similar behavior is
observed when the sensitivity is obtained with the f 2.6

m and m1 functions. Thus, it can be concluded that
generating functions can be suitable to keep a high sensitivity over a larger dynamic range compared
with that obtained when it is determined based on a single statistics feature, such as the peak amplitude,
the mean, the area or the RMS. Furthermore, of our tailored functions, f k

A was the best option since
it has the highest sensitivity for low concentration levels, and it is kept quasi constant for the full
measurement range.
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Figure 17. Simulated (S) and experimental (E) sensitivities for the generating functions f 4.8
A , f 2.6

m and
for the peak amplitude (A) and the mean (m1).

5. Conclusions

In this work, a tailored algorithm to enhance the sensitivity of sensors based on DA-TLAS was
presented. Here, it was demonstrated that with this algorithm, it is possible to have a quasi constant
sensitivity over a much wider dynamic range than obtained when the concentration is determined
based on a single statistics feature such as the peak amplitude, the area, the mean or the RMS of the
sensor output waveform. This is possible by taking into account other statistical features of the sensor
output waveforms, which usually are wasted. Moreover, it was shown that different functions can
be built by combining statistics features in order to tailor an optimal generating function to enhance
the sensitivity for certain concentration ranges. Finally, the algorithm was tested for one experimental
sensor setup, and the obtained measurements are in agreement with the our simulated results.
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