Next Article in Journal
Estimating Angle-of-Arrival and Time-of-Flight for Multipath Components Using WiFi Channel State Information
Next Article in Special Issue
Automatic Detection and Classification of Audio Events for Road Surveillance Applications
Previous Article in Journal
Smart Sensing Technologies for Personalised e-Coaching
Previous Article in Special Issue
Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator
Article Menu
Issue 6 (June) cover image

Export Article

Version is current.

Open AccessArticle

Supervoxels-Based Histon as a New Alzheimer’s Disease Imaging Biomarker

Centro de Tecnología Biomédica, Campus de Montegancedo, Universidad Politécnica de Madrid, 28233 Pozuelo de Alarcón, Spain
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Sensors 2018, 18(6), 1752; https://doi.org/10.3390/s18061752
Received: 6 April 2018 / Revised: 22 May 2018 / Accepted: 25 May 2018 / Published: 29 May 2018
(This article belongs to the Special Issue Sensor Signal and Information Processing)
  |  
PDF [473 KB, uploaded 1 June 2018]
  |  

Abstract

Alzheimer’s disease (AD) represents the prevalent type of dementia in the elderly, and is characterized by the presence of neurofibrillary tangles and amyloid plaques that eventually leads to the loss of neurons, resulting in atrophy in specific brain areas. Although the process of degeneration can be visualized through various modalities of medical imaging and has proved to be a valuable biomarker, the accurate diagnosis of Alzheimer’s disease remains a challenge, especially in its early stages. In this paper, we propose a novel classification method for Alzheimer’s disease/cognitive normal discrimination in structural magnetic resonance images (MRI), based on the extension of the concept of histons to volumetric images. The proposed method exploits the relationship between grey matter, white matter and cerebrospinal fluid degeneration by means of a segmentation using supervoxels. The calculated histons are then processed for a reduction in dimensionality using principal components analysis (PCA) and the resulting vector is used to train an support vector machine (SVM) classifier. Experimental results using the OASIS-1 database have proven to be a significant improvement compared to a baseline classification made using the pipeline provided by Clinica software. View Full-Text
Keywords: Alzheimer’s disease; histon; superpixels; supervoxels; MRI; PCA; SVM; classification Alzheimer’s disease; histon; superpixels; supervoxels; MRI; PCA; SVM; classification
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Toro, C.A.O.; Gonzalo-Martín, C.; García-Pedrero, A.; Menasalvas Ruiz, E. Supervoxels-Based Histon as a New Alzheimer’s Disease Imaging Biomarker. Sensors 2018, 18, 1752.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top