Differentiation Between Organic and Non-Organic Apples Using Diffraction Grating and Image Processing—A Cost-Effective Approach
Abstract
:1. Introduction
2. Measurements
2.1. Sensor System
2.2. Diffraction Grating and Image Acquisition
2.3. Rainbow Images Segmentation
2.3.1. The Proposed Framework
2.3.2. Image Denoising
2.3.3. The OSTU Method
2.4. Feature Vector Representation
3. Data Analysis
3.1. The Nonlinear Problem
3.2. Pattern Recognition Framework
3.3. Classifiers
3.3.1. k-Nearest Neighbors (k-NN)
3.3.2. Support Vector Machine (SVM)
3.3.3. Partial Least Squares Discriminant Analysis (PLS-DA)
3.3.4. Kernel Partial Least Squares Discriminant Analysis (KPLS-DA)
3.3.5. Locally Weighted Partial Least Squares Classifier (LW-PLSC)
3.4. Performance Evaluation
4. Results and Discussion
4.1. Data Pre-Processing
4.2. Parameter Optimization and Classification Performance
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Moncayo, S.; Manzoor, S.; Navarro-Villoslada, F.; Caceres, J.O. Evaluation of supervised chemometric methods for sample classification by Laser Induced Breakdown Spectroscopy. Chemom. Intell. Lab. Syst. 2015, 146, 354–364. [Google Scholar] [CrossRef]
- Laghi, L.; Picone, G.; Capozzi, F. Nuclear magnetic resonance for foodomics beyond food analysis. TrAC Trends Anal. Chem. 2014, 59, 93–102. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, J.; Wu, B.; Sun, J.; Dai, C. Discrimination of tea varieties using FTIR spectroscopy and allied Gustafson-Kessel clustering. Comput. Electron. Agric. 2018, 147, 64–69. [Google Scholar] [CrossRef]
- González-Martín, M.I.; Revilla, I.; Vivar-Quintana, A.M.; Betances Salcedo, E.V. Pesticide residues in propolis from Spain and Chile. An approach using near infrared spectroscopy. Talanta 2017, 165, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Alishahi, A.; Farahmand, H.; Prieto, N.; Cozzolino, D. Identification of transgenic foods using NIR spectroscopy: A review. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 75, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Wang, H.; Maguire, P.; Nibouche, O. Differentiation of Organic and Non-Organic Apples Using Near Infrared Reflectance Spectroscopy—A Pattern Recognition Approach. In Proceedings of the 2016 IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Song, W.; Wang, H.; Maguire, P.; Nibouche, O. Nearest clusters based partial least squares discriminant analysis for the classification of spectral data. Anal. Chim. Acta 2018, 1009, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Parra, H.A.; Pustjens, A.; Hettinga, K.; Mongondry, P.; van Ruth, S.M. Evaluation of portable near-infrared spectroscopy for organic milk authentication. Talanta 2018, 184, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Centner, V.; De Noord, O.E.; Massart, D.L. Detection of nonlinearity in multivariate calibration. Anal. Chim. Acta 1998, 376, 153–168. [Google Scholar] [CrossRef]
- Despagne, F.; Luc Massart, D.; Chabot, P. Development of a robust calibration model for nonlinear in-line process data. Anal. Chem. 2000, 72, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Araújo, S.R.; Wetterlind, J.; Demattê, J.A.M.; Stenberg, B. Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques. Eur. J. Soil Sci. 2014, 65, 718–729. [Google Scholar] [CrossRef]
- SCiO—The World’s First Pocket Sized Molecular Sensor. Available online: https://www.consumerphysics.com/ (accessed on 15 April 2018).
- Gere, A.; Danner, L.; de Antoni, N.; Kovács, S.; Dürrschmid, K.; Sipos, L. Visual attention accompanying food decision process: An alternative approach to choose the best models. Food Qual. Prefer. 2016, 51, 1–7. [Google Scholar] [CrossRef]
- Postma, G.J.; Krooshof, P.W.T.; Buydens, L.M.C. Opening the kernel of kernel partial least squares and support vector machines. Anal. Chim. Acta 2011, 705, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kano, M.; Nakagawa, H.; Hasebe, S. Estimation of active pharmaceutical ingredients content using locally weighted partial least squares and statistical wavelength selection. Int. J. Pharm. 2011, 421, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosipal, R.; Trejo, L.J. Kernel partial least squares regression in reproducing kernel hilbert space. J. Mach. Learn. Res. 2002, 2, 97–123. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Devlin, S.J. Locally weighted regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
- Uchimaru, T.; Kano, M. Sparse Sample Regression Based Just-In-Time Modeling (SSR-JIT): Beyond Locally Weighted Approach. IFAC-PapersOnLine 2016, 49, 502–507. [Google Scholar] [CrossRef]
- Zhang, X.; Kano, M.; Li, Y. Locally weighted kernel partial least squares regression based on sparse nonlinear features for virtual sensing of nonlinear time-varying processes. Comput. Chem. Eng. 2017, 104, 164–171. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Narendra, P.M. A Separable Median Filter for Image Noise Smoothing. IEEE Trans. Pattern Anal. Mach. Intell. 1981, PAMI-3, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Soleimanizadeh, S.; Mohamad, D.; Saba, T.; Rehman, A. Recognition of Partially Occluded Objects Based on the Three Different Color Spaces (RGB, YCbCr, HSV). 3D Res. 2015, 6, 22. [Google Scholar] [CrossRef]
- Beyer, K.; Goldstein, J.; Ramakrishnan, R.; Shaft, U. When Is “Nearest Neighbor” Meaningful? Database Theory—ICDT’99. In Database Theory—ICDT’99; Springer: New York, NY, USA, 1999; Volume 1540, pp. 217–235. ISBN 978-3-54-065452-0. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin, Germany, 1995; Volume 8, p. 188. [Google Scholar]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Snee, R.D. Validation of Regression Models: Methods and Examples. Technometrics 1977, 19, 415–428. [Google Scholar] [CrossRef]
- Westad, F.; Marini, F. Validation of chemometric models—A tutorial. Anal. Chim. Acta 2015, 893, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
Training | Testing | Parameters | |||||
---|---|---|---|---|---|---|---|
Raw | Pre-Processed | Overall | Non-Organic | Organic | |||
k-NN | 72 | 91 | 84 | 75 | 90 | NN: 1 | |
SVM | 80 | 89 | 92 | 92.7 | 86.7 | C: 4 | Kernel: PUK |
PLS-DA | 70 | 74 | 52 | 36.4 | 64.3 | LVs: 8 | |
KPLS-DA | 88 | 91 | 92 | 81.8 | 100 | LVs: 9 | σ: 100 |
LW-PLSC | 87 | 94 | 94 | 89.5 | 96.8 | LVs: 2 | φ: 15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, N.; Song, W.; Wang, H.; Guo, G.; Liu, Y. Differentiation Between Organic and Non-Organic Apples Using Diffraction Grating and Image Processing—A Cost-Effective Approach. Sensors 2018, 18, 1667. https://doi.org/10.3390/s18061667
Jiang N, Song W, Wang H, Guo G, Liu Y. Differentiation Between Organic and Non-Organic Apples Using Diffraction Grating and Image Processing—A Cost-Effective Approach. Sensors. 2018; 18(6):1667. https://doi.org/10.3390/s18061667
Chicago/Turabian StyleJiang, Nanfeng, Weiran Song, Hui Wang, Gongde Guo, and Yuanyuan Liu. 2018. "Differentiation Between Organic and Non-Organic Apples Using Diffraction Grating and Image Processing—A Cost-Effective Approach" Sensors 18, no. 6: 1667. https://doi.org/10.3390/s18061667
APA StyleJiang, N., Song, W., Wang, H., Guo, G., & Liu, Y. (2018). Differentiation Between Organic and Non-Organic Apples Using Diffraction Grating and Image Processing—A Cost-Effective Approach. Sensors, 18(6), 1667. https://doi.org/10.3390/s18061667