Next Article in Journal
A Preliminary Analysis of Wind Retrieval, Based on GF-3 Wave Mode Data
Next Article in Special Issue
Stand-Alone Wearable System for Ubiquitous Real-Time Monitoring of Muscle Activation Potentials
Previous Article in Journal
Integrated Method for Personal Thermal Comfort Assessment and Optimization through Users’ Feedback, IoT and Machine Learning: A Case Study
Previous Article in Special Issue
Development of a Wireless Unified-Maintenance System for the Structural Health Monitoring of Civil Structures
Open AccessArticle

Effective Crack Detection in Railway Axles Using Vibration Signals and WPT Energy

Mechanical Engineering Department,Universidad Carlos III de Madrid, 28911 Madrid, Spain
*
Author to whom correspondence should be addressed.
Sensors 2018, 18(5), 1603; https://doi.org/10.3390/s18051603
Received: 22 April 2018 / Revised: 10 May 2018 / Accepted: 14 May 2018 / Published: 17 May 2018
(This article belongs to the Special Issue Smart Sensing System for Real-Time Monitoring)
Crack detection for railway axles is key to avoiding catastrophic accidents. Currently, non-destructive testing is used for that purpose. The present work applies vibration signal analysis to diagnose cracks in real railway axles installed on a real Y21 bogie working on a rig. Vibration signals were obtained from two wheelsets with cracks at the middle section of the axle with depths from 5.7 to 15 mm, at several conditions of load and speed. Vibration signals were processed by means of wavelet packet transform energy. Energies obtained were used to train an artificial neural network, with reliable diagnosis results. The success rate of 5.7 mm defects was 96.27%, and the reliability in detecting larger defects reached almost 100%, with a false alarm ratio lower than 5.5%. View Full-Text
Keywords: bogies test rig; condition monitoring; crack detection; vibration analysis bogies test rig; condition monitoring; crack detection; vibration analysis
Show Figures

Figure 1

MDPI and ACS Style

Gómez, M.J.; Corral, E.; Castejón, C.; García-Prada, J.C. Effective Crack Detection in Railway Axles Using Vibration Signals and WPT Energy. Sensors 2018, 18, 1603.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop