CNT Foam-Embedded Micro Gas Preconcentrator for Low-Concentration Ethane Measurements
Abstract
1. Introduction
2. Materials and Methods
2.1. Principles and Requirements
2.2. Materials
Synthesis Method for CNT Foam
2.3. Microfabrication
2.4. Experimental Setup and Performance Test
2.4.1. Pressure-Drop Test of Gas-Adsorbing Materials
2.4.2. Preconcentration Test of the µ–PC Module
3. Results and Discussions
3.1. Pressure-Drop Test of Gas-Adsorbing Materials
3.2. Preconcentration Test of the µ–PC Module
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Amann, A.; CostelloBde, L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 2014, 8, 034001. [Google Scholar] [CrossRef] [PubMed]
- Camara, E.H.M.; Breuil, P.; Briand, D.; De Rooij, N.F.; Pijolat, C. A micro gas preconcentrator with improved performance for pollution monitoring and explosives detection. Anal. Chim. Acta 2011, 688, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Skeldon, K.D.; Patterson, C.; Wyse, C.A.; Gibson, G.M.; Padgett, M.J.; Longbottom, C.; McMillan, L.C. The potential offered by real-time, high-sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy. J. Opt. A Pure Appl. Opt. 2005, 7, S376. [Google Scholar] [CrossRef]
- Abbott, S.M.; Elder, J.B.; Španěl, P.; Smith, D. Quantification of acetonitrile in exhaled breath and urinary headspace using selected ion flow tube mass spectrometry. Int. J. Mass Spectrom. 2003, 228, 655–665. [Google Scholar] [CrossRef]
- Bloemen, K.; Hooyberghs, J.; Desager, K.; Witters, E.; Schoeters, G. Non-invasive biomarker sampling and analysis of the exhaled breath proteome. Proteom. Clin. Appl. 2009, 3, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Riess, U.; Tegtbur, U.; Fauck, C.; Fuhrmann, F.; Markewitz, D.; Salthammer, T. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOX in exhaled human breath. Anal. Chim. Acta 2010, 669, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Spinhirne, J.P.; Koziel, J.A.; Chirase, N.K. A device for non-invasive on-site sampling of cattle breath with solid-phase microextraction. Biosyst. Eng. 2003, 84, 239–246. [Google Scholar] [CrossRef]
- Ye, M.; Chien, P.J.; Toma, K.; Arakawa, T.; Mitsubayashi, K. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath. Biosens. Bioelectron. 2015, 73, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Yeh, M.Y.; Burnham, E.L.; Moss, M.; Brown, L.A. Non-invasive evaluation of pulmonary glutathione in the exhaled breath condensate of otherwise healthy alcoholics. Respir. Med. 2008, 102, 248–255. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hunter, G.W.; Dweik, R.A. Applied breath analysis: An overview of the challenges and opportunities in developing and testing sensor technology for human health monitoring in aerospace and clinical applications. J. Breath Res. 2008, 2, 037020. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kneepkens, C.F.; Lepage, G.; Roy, C.C. The potential of the hydrocarbon breath test as a measure of lipid peroxidation. Free Radic. Biol. Med. 1994, 17, 127–160. [Google Scholar] [CrossRef]
- Buszewski, B.; Kęsy, M.; Ligor, T.; Amann, A. Human exhaled air analytics: Biomarkers of diseases. Biomed. Chromatogr. 2007, 21, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Bessa, V.; Darwiche, K.; Teschler, H.; Sommerwerck, U.; Rabis, T.; Baumbach, J.I.; Freitag, L. Detection of volatile organic compounds (VOCs) in exhaled breath of patients with chronic obstructive pulmonary disease (COPD) by ion mobility spectrometry. Int. J. Ion Mobil. Spectrom. 2011, 14, 7–13. [Google Scholar] [CrossRef]
- Kanoh, S.; Kobayashi, H.; Motoyoshi, K. Exhaled ethane: An in vivo biomarker of lipid peroxidation in interstitial lung diseases. Chest 2005, 128, 2387–2392. [Google Scholar] [CrossRef] [PubMed]
- Beurden, W.J.C.; Dekhuijzen, P.N.R.; Smeenk, F.W.J.M. Exhaled biomarkers in COPD: Their potential role in diagnosis, treatment and prognosis. Monaldi Arch. Chest Dis. 2002, 57, 258–267. [Google Scholar] [PubMed]
- Righettoni, M.; Tricoli, A. Toward portable breath acetone analysis for diabetes detection. J. Breath Res. 2011, 5, 037109. [Google Scholar] [CrossRef] [PubMed]
- Toyooka, T.; Hiyama, S.; Yamada, Y. A prototype portable breath acetone analyzer for monitoring fat loss. J. Breath Res. 2013, 7, 036005. [Google Scholar] [CrossRef] [PubMed]
- Wlodzimirow, K.A.; Abu-Hanna, A.; Schultz, M.J.; Maas, M.A.W.; Bos, L.D.J.; Sterk, P.J.; Knobel, H.H.; Soers, R.J.T.; Chamuleau, R.A. Exhaled breath analysis with electronic nose technology for detection of acute liver failure in rats. Biosens. Bioelectron. 2014, 53, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Chang, H.; Zellers, E.T. Microfabricated gas chromatograph for the selective determination of trichloroethylene vapor at sub-parts-per-billion concentrations in complex mixtures. Anal. Chem. 2011, 83, 7198–7206. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Burris, D.R.; Chang, H.; Bryant-Genevier, J.; Zellers, E.T. Microfabricated gas chromatograph for on-site determination of trichloroethylene in indoor air arising from vapor intrusion. Environ. Sci. Technol. 2012, 46, 6065–6072. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P.R.; Manginell, P.; Adkins, D.R.; Kottenstette, R.J.; Wheeler, D.R.; Sokolowski, S.S.; Trudell, D.E.; Byrnes, J.E.; Okandan, M.; Bauer, J.M.; et al. Recent advancements in the gas-phase MicroChemLab. IEEE Sens. J. 2006, 6, 784–795. [Google Scholar]
- Lu, C.J.; Steinecker, W.H.; Tian, W.C.; Oborny, M.C.; Nichols, J.M.; Agah, M.; Potkay, J.A.; Chan, J.; Driscoll, H.K.L.; Sacks, R.D.; et al. First-generation hybrid MEMS gas chromatograph. Lab Chip 2005, 5, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Gràcia, I.; Ivanov, P.; Blanco, F.; Sabaté, N.; Vilanova, X.; Correig, X.; Fonseca, L.; Figueras, E.; Santander, J.; Cané, C. Sub-ppm gas sensor detection via spiral μ-preconcentrator. Sens. Actuators B Chem. 2008, 132, 149–154. [Google Scholar]
- Ruiz, A.M.; Gràcia, I.; Sabaté, N.; Ivanov, P.; Sànchez, A.; Duch, M.; Gerbolés, M.; Moreno, A.; Cané, C. Membrane-suspended microgrid as a gas preconcentrator for chromatographic applications. Sens. Actuators A. Phys. 2007, 135, 192–196. [Google Scholar] [CrossRef]
- Voiculescu, I.; McGill, R.A.; Zaghloul, M.E.; Mott, D.; Stepnowski, J.; Stepnowski, S.; Summers, H.; Nguyen, V.; Ross, S.; Walsh, K.; et al. Micropreconcentrator for enhanced trace detection of explosives and chemical agents. IEEE Sens. J. 2006, 6, 1094–1104. [Google Scholar] [CrossRef]
- Zheng, F.; Baldwin, D.L.; Fifield, L.S.; Anheier, N.C.; Aardahl, C.L.; Grate, J.W. Single-walled carbon nanotube paper as a sorbent for organic vapor preconcentration. Anal. Chem. 2006, 78, 2442–2446. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.C.; Chan, H.K.; Lu, C.J.; Pang, S.W.; Zellers, E.T. Multiple-stage microfabricated preconcentrator-focuser for micro gas chromatography system. J. Microelectromech. Syst. 2005, 14, 498–507. [Google Scholar] [CrossRef]
- Lahlou, H.; Sanchez, J.B.; Vilanova, X.; Berger, F.; Correig, X.; Fierro, V.; Celzard, A. Towards a GC-based microsystem for benzene and 1, 3 butadiene detection: Pre-concentrator characterization. Sens. Actuators B Chem. 2011, 156, 680–688. [Google Scholar] [CrossRef]
- Davis, C.E.; Ho, C.K.; Hughes, R.C.; Thomas, M.L. Enhanced detection of m-xylene using a preconcentrator with a chemiresistor sensor. Sens. Actuators B Chem. 2005, 104, 207–216. [Google Scholar] [CrossRef]
- Takada, S.; Nakai, T.; Thurakitseree, T.; Shiomi, J.; Maruyama, S.; Takagi, H.; Shuzo, M.; Delaunay, J.-J.; Yamada, I. Micro gas preconcentrator made of a film of single-walled carbon nanotubes. IEEJ Trans. Sens. Micromach. 2010, 130, 207–211. [Google Scholar] [CrossRef]
- Lahlou, H.; Leghrib, R.; Llobet, E.; Vilanova, X.; Correig, X. Development of a gas pre-concentrator based on carbon nanotubes for benzene detection. Procedia Eng. 2011, 25, 239–242. [Google Scholar] [CrossRef]
- Chae, M.S.; Kim, J.; Yoo, Y.K.; Kang, J.Y.; Lee, J.H.; Hwang, K.S. A micro-preconcentrator combined olfactory sensing system with a micromechanical cantilever sensor for detecting 2,4-dinitrotoluene gas vapor. Sensors 2015, 15, 18167–18177. [Google Scholar] [CrossRef] [PubMed]
- Alfeeli, B.; Cho, D.; Ashraf-Khorassani, M.; Taylor, L.T.; Agah, M. MEMS-based multi-inlet/outlet preconcentrator coated by inkjet printing of polymer adsorbents. Sens. Actuators B Chem. 2008, 133, 24–32. [Google Scholar] [CrossRef]
- Dow, A.B.A.; Lang, W. A micromachined preconcentrator for ethylene monitoring system. Sens. Actuators B Chem. 2010, 151, 304–307. [Google Scholar]
- Rydosz, A.; Maziarz, W.; Pisarkiewicz, T.; Domański, K.; Grabiec, P. A gas micropreconcentrator for low level acetone measurements. Microelectron. Reliab. 2012, 52, 2640–2646. [Google Scholar] [CrossRef]
- Vereb, H.; Alfeeli, B.; Dietrich, A.; Agah, M. Using MEMS-based preconcentrators to identify iron catalyzed lipid oxidation products in breath. In Proceedings of the IEEE Sensors Conference, University of Limerick, Limerick, Ireland, 28–31 October 2011; pp. 1237–1240. [Google Scholar]
- Kim, M.; Mitra, S. A microfabricated microconcentrator for sensors and gas chromatography. J. Chromatogr. A 2003, 996, 1–11. [Google Scholar] [CrossRef]
- Simoes, E.W.; De Souza, S.G.; Da Silva, M.L.P.; Furlan, R.; Peres, H.E.M. Study of preconcentration of non-polar compounds in microchannels with constrictions. Sens. Actuators B Chem. 2006, 115, 232–239. [Google Scholar] [CrossRef]
- Martin, M.; Crain, M.; Walsh, K.; McGill, R.A.; Houser, E.; Stepnowski, J.; Stepnowski, S.; Wu, H.-D.; Ross, S. Microfabricated vapor preconcentrator for portable ion mobility spectroscopy. Sens. Actuators B Chem. 2007, 126, 447–454. [Google Scholar] [CrossRef]
- Kanoun, O.; Müller, C.; Benchirouf, A.; Sanli, A.; Dinh, T.N.; Al-Hamry, A.; Bu, L.; Gerlach, C.; Bouhamed, A. Flexible carbon nanotube films for high performance strain sensors. Sensors 2014, 14, 10042–10071. [Google Scholar] [CrossRef] [PubMed]
- Tournus, F.; Charlier, J.C. Ab initio study of benzene adsorption on carbon nanotubes. Phys. Rev. B 2005, 71, 165421. [Google Scholar] [CrossRef]
- Pan, B.; Xing, B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 2008, 42, 9005–9013. [Google Scholar] [CrossRef] [PubMed]
- Hussain, C.M.; Saridara, C.; Mitra, S. Modifying the sorption properties of multi-walled carbon nanotubes via covalent functionalization. Analyst 2009, 134, 1928–1933. [Google Scholar] [CrossRef] [PubMed]
- Hussain, C.M.; Saridara, C.; Mitra, S. Microtrapping characteristics of single and multi-walled carbon nanotubes. J. Chromatogr. A 2008, 1185, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Hussain, C.M.; Saridara, C.; Mitra, S. Carbon nanotubes as sorbents for the gas phase preconcentration of semivolatile organics in a microtrap. Analyst 2008, 133, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Sigma-Aldrich. Available online: https://www.sigmaaldrich.com/catalog/product/supelco/10184?lang=en®ion=US (accessed on 2 May 2018).
- Alfeeli, B.; Agah, M. Micro preconcentrator with embedded 3D pillars for breath analysis applications. In Proceedings of the IEEE Sensors Conference, Lecce, Italy, 26–29 October 2008; pp. 736–739. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lim, S.-H. CNT Foam-Embedded Micro Gas Preconcentrator for Low-Concentration Ethane Measurements. Sensors 2018, 18, 1547. https://doi.org/10.3390/s18051547
Lee J, Lim S-H. CNT Foam-Embedded Micro Gas Preconcentrator for Low-Concentration Ethane Measurements. Sensors. 2018; 18(5):1547. https://doi.org/10.3390/s18051547
Chicago/Turabian StyleLee, Janghyeon, and Si-Hyung Lim. 2018. "CNT Foam-Embedded Micro Gas Preconcentrator for Low-Concentration Ethane Measurements" Sensors 18, no. 5: 1547. https://doi.org/10.3390/s18051547
APA StyleLee, J., & Lim, S.-H. (2018). CNT Foam-Embedded Micro Gas Preconcentrator for Low-Concentration Ethane Measurements. Sensors, 18(5), 1547. https://doi.org/10.3390/s18051547