Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation
Abstract
:1. Introduction
2. System Architecture and Hardware Design
2.1. System Overview
2.2. Mechanical Design of Data Glove
3. Software Design
3.1. Flowchart of Software
3.2. Sensor Calibration
3.3. Sensor Fusion Algorithm
4. Verification of Data Gloves
4.1. Verification of Raw Data
4.2. Verification of Static Finger Angles
4.3. Verification of Dynamic Finger Angles
4.4. Verification of Stability of Angle Measurement
4.5. Real-Time Visual Operation
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Chen, W.; Markopoulos, P. Literature review on wearable systems in upper extremity rehabilitation. In Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics, Valencia, Spain, 1–4 June 2014. [Google Scholar]
- Kortier, H.G.; Sluiter, V.I.; Roetenberg, D.; Veltink, P.H. Assessment of hand kinematics using inertial and magnetic sensors. J. Neuroeng. Rehabil. 2014, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, N.; Mura, G.D.; Lorussi, F.; Paradiso, R.; DeRossi, D.; Tognetti, A. Exploiting wearable goniometer technology for motion sensing gloves. IEEE J. Biomed. Health Inform. 2014, 18, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Liu, H. Exploring human hand capabilities into embedded multifingered object manipulation. IEEE Trans. Ind. Inform. 2011, 7, 389–398. [Google Scholar] [CrossRef]
- Park, Y.; Lee, J.; Bae, J. Development of a wearable sensing glove for measuring the motion of fingers using linear potentiometers and flexible wires. IEEE Trans. Ind. Inform. 2015, 11, 198–206. [Google Scholar] [CrossRef]
- Ye, M.; Yang, C.; Stankovic, V.; Stankovic, L.; Kerr, A. A Depth Camera Motion Analysis Framework for Tele-rehabilitation: Motion Capture and Person-Centric Kinematics Analysis. IEEE J. Sel. Top. Signal Process. 2016, 10, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, C.D.; Robinson, R.; Malpass, A.J.; Bogle, T.P.; Dell, T.A.; Harris, C.; Demain, S.H. Markerless motion capture and measurement of hand kinematics: Validation and application to home-based upper limb rehabilitation. IEEE Trans. Biomed. Eng. 2013, 60, 2184–2192. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Sun, F.; Liu, H.; Guo, D. Development of a Wearable Device for Motion Capturing Based on Magnetic and Inertial Measurement Units. Sci. Program. 2017, 1–11. [Google Scholar] [CrossRef]
- Djurić-Jovičić, M.; Jovičić, N.S.; Roby-Brami, A.; Popović, M.B.; Kostić, V.S.; Djordjević, A.R. Quantification of finger-tapping angle based on wearable sensors. Sensors 2017, 17, 203. [Google Scholar] [CrossRef] [PubMed]
- Lemos, J.D.; Hernandez, A.M.; Soto-Romero, G. An Instrumented Glove to Assess Manual Dexterity in Simulation-Based Neurosurgical Education. Sensors 2017, 17, 988. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Yoo, K.; Kang, S.J.; Seo, B.; Kim, S.K. Development of a low-cost wearable sensing glove with multiple inertial sensors and a light and fast orientation estimation algorithm. J. Supercomput. 2016, 72, 1–14. [Google Scholar] [CrossRef]
- Kitano, K.; Ito, A.; Tsujiuchi, N.; Wakida, S. Estimation of joint center and measurement of finger motion by inertial sensors. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 17–20 August 2016. [Google Scholar]
- Moreira, A.H.J.; Queirós, S.; Fonseca, J.; Rodrigues, P.L.; Rodrigues, N.F.; Vilaça, J.L. Real-time hand tracking for rehabilitation and character animation. In Proceedings of the IEEE 3nd International Conference on Serious Games and Applications for Health (SeGAH), Rio de Janeiro, Brazil, 14–16 May 2014. [Google Scholar]
- Erol, A.; Bebis, G.; Nicolescu, M.; Boyle, R.D.; Twombly, X. Vision-based hand pose estimation: A review. Comput. Vis. Image Underst. 2007, 108, 52–73. [Google Scholar] [CrossRef]
- Wang, Q.; Markopoulos, P.; Yu, B.; Chen, W.; Timmermans, A. Interactive wearable systems for upper body rehabilitation: A systematic review. J. Neuroeng. Rehabil. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.-S.; Hsiao, P.-C.; Yang, S.-Y.; Su, C.-S.; Lee, I.-J. Data Glove System Embedded with Inertial Measurement Units for Hand Function Evaluation in Stroke Patients. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2204–2213. [Google Scholar] [CrossRef] [PubMed]
- Caruso, M.J. Applications of Magnetoresistive Sensors in Navigation Systems. Readings 1997, 72, 15–21. [Google Scholar] [CrossRef]
- Baraniello, V.R.; Cicala, M.; Corraro, F. An extension of integrated navigation algorithms to estimate elastic motions of very flexible aircrafts. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2010. [Google Scholar]
- Wagner, J.F. Adapting the Principle of Integrated Navigation Systems to Measuring the Motion of Rigid Multibody Systems. Multibody Syst. Dyn. 2004, 11, 87–110. [Google Scholar] [CrossRef]
- Wagner, J.F.; Wieneke, T. Integrating satellite and inertial navigation—Conventional and new fusion approaches. Control Eng. Pract. 2003, 11, 543–550. [Google Scholar] [CrossRef]
- Lawrence, A. Modern Inertial Technology: Navigation, Guidance, and Control, 2nd ed.; Corr. 3. Printing; Springer: New York, NY, USA, 2001; ISBN 978-1-4684-0444-9. [Google Scholar]
- Titterton, D.H.; Weston, J.L. Strapdown Inertial Navigation Technology, 2nd ed.; Reprint; AIAA: Reston, VA, USA, 2009; ISBN 978-0-8634-1358-2. [Google Scholar]
- Wagner, J.F. About Motion Measurement in Sports Based on Gyroscopes and Accelerometers—An Engineering Point of View. Gyroscopy Navig. 2018, 9, 1–18. [Google Scholar] [CrossRef]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011. [Google Scholar]
- Sun, T.; Li, H.; Liu, Q.; Duan, L.; Li, M.; Wang, C.; Liu, Q.; Li, W.; Shang, W.; Wu, Z.; et al. Inertial Sensor-Based Motion Analysis of Lower Limbs for Rehabilitation Treatments. J. Healthc. Eng. 2017, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Min, H.; Wei, H. Inertial measurement unit-based iterative pose compensation algorithm for low-cost modular manipulator. Adv. Mech. Eng. 2016, 8. [Google Scholar] [CrossRef]
- Wise, S.; Gardner, W.; Sabelman, E.; Valainis, E.; Wong, Y.; Glass, K.; Drace, J.; Rosen, J.M. Evaluation of a fiber optic glove for semi-automated goniometric measurements. J. Rehabil. Res. Dev. 1990, 27, 411. [Google Scholar] [CrossRef] [PubMed]
- Dipietro, L.; Sabatini, A.M.; Dario, P. Evaluation of an instrumented glove for hand-movement acquisition. J. Rehabil. Res. Dev. 2003, 40, 181. [Google Scholar] [CrossRef]
Reference Angle (°) | 0 | 30 | 60 | 90 | 120 |
---|---|---|---|---|---|
Average of Measured Angles (°) | 0.09 | 30.04 | 60.17 | 88.37 | 116.47 |
RMSE (°) | 0.15 | 0.05 | 0.10 | 0.19 | 0.09 |
Actual Swinging Angle Range (°) | 30 | 60 | 90 |
---|---|---|---|
Mean Error (°) | 0.91 | −2.30 | −0.82 |
System | Kortier et al. [2] | Choi et al. [11] | Fang et al. [8] | Proposed System |
---|---|---|---|---|
Transmission interface | USB | Bluetooth | Bluetooth | USB/Bluetooth |
Validation | Dynamic | Static | Dynamic | Raw data, Static, Dynamic |
Easy to wear | No | Yes | Yes | Yes |
Modular design | No | No | No | Yes |
Maintainability | No | No | No | Yes |
Extensibility | No | No | No | Yes |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, B.-S.; Lee, I.-J.; Yang, S.-Y.; Lo, Y.-C.; Lee, J.; Chen, J.-L. Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation. Sensors 2018, 18, 1545. https://doi.org/10.3390/s18051545
Lin B-S, Lee I-J, Yang S-Y, Lo Y-C, Lee J, Chen J-L. Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation. Sensors. 2018; 18(5):1545. https://doi.org/10.3390/s18051545
Chicago/Turabian StyleLin, Bor-Shing, I-Jung Lee, Shu-Yu Yang, Yi-Chiang Lo, Junghsi Lee, and Jean-Lon Chen. 2018. "Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation" Sensors 18, no. 5: 1545. https://doi.org/10.3390/s18051545
APA StyleLin, B.-S., Lee, I.-J., Yang, S.-Y., Lo, Y.-C., Lee, J., & Chen, J.-L. (2018). Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation. Sensors, 18(5), 1545. https://doi.org/10.3390/s18051545