Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe
Abstract
:1. Introduction
2. Materials and Methods
2.1. ITO Optical Probe Fabrication and Testing
2.2. Electrochemical Setup and Electropolymerization of KP
2.3. X-ray Photoelectron Spectroscopy Surface Studies
3. Results and Discussion
3.1. The RI Sensitivity of the ITO-LMR Probe
3.2. Electrodeposition of KP on GC, ITO and ITO-LMR Electrodes
3.3. XPS Studies of KP-Modified ITO Surface
3.4. ITO-LMR-Based KP Electropolymerization Monitoring
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sakeena, M.H.F.; Yam, M.F.; Elrashid, S.M.; Munavvar, A.S.; Aznim, M.N. Anti-inflammatory and Analgesic Effects of Ketoprofen in Palm Oil Esters Nanoemulsion. J. Oleo Sci. 2010, 59, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Asanuma, M.; Asanuma, S.N.; Gómez-Vargas, M.; Yamamoto, M.; Ogawa, N. Ketoprofen, a non-steroidal anti-inflammatory drug prevents the late-onset reduction of muscarinic receptors in gerbil hippocampus after transient forebrain ischemia. Neurosci. Lett. 1997, 225, 109–112. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.E.; Novotny, L.; Hamza, H. Determination of diclofenac sodium, flufenamic acid, indomethacin and ketoprofen by LC-APCI-MS. J. Pharm. Biomed. Anal. 2001, 24, 587–594. [Google Scholar] [CrossRef]
- Patrolecco, L.; Ademollo, N.; Grenni, P.; Tolomei, A.; Barra Caracciolo, A.; Capri, S. Simultaneous determination of human pharmaceuticals in water samples by solid phase extraction and HPLC with UV-fluorescence detection. Microchem. J. 2013, 107, 165–171. [Google Scholar] [CrossRef]
- Muhammad, N.; Li, W.; Subhani, Q.; Wang, F.; Zhao, Y.-G.; Zhu, Y. Dual application of synthesized SnO2 nanoparticles in ion chromatography for sensitive fluorescence determination of ketoprofen in human serum, urine, and canal water samples. New J. Chem. 2017, 41, 9321–9329. [Google Scholar] [CrossRef]
- Zhuang, Y.; Song, H. Sensitive determination of ketoprofen using flow injection with chemiluminescence detection. J. Pharm. Biomed. Anal. 2007, 44, 824–828. [Google Scholar] [CrossRef] [PubMed]
- Roushani, M.; Shahdost-fard, F. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor. Mater. Sci. Eng. C 2016, 68, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Amankwa, L.; Chatten, L.G. Electrochemical reduction of ketoprofen and its determination in pharmaceutical dosage forms by differential-pulse polarography. Analyst 1984, 109, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Emara, K.M.; Ali, A.M.; Abo-El Maali, N. The polarographic behaviour of ketoprofen and assay of its capsules using spectrophotometric and voltammetric methods. Talanta 1994, 41, 639–645. [Google Scholar] [CrossRef]
- Ghoneim, M.M.; Tawfik, A. Voltammetric studies and assay of the anti-inflammatory drug ketoprofen in pharmaceutical formulation and human plasma at a mercury electrode. Can. J. Chem. 2003, 81, 889–896. [Google Scholar] [CrossRef]
- Kormosh, Z.; Hunka, I.; Bazel, Y.; Matviychuk, O. Potentiometric determination of ketoprofen and piroxicam at a new PVC electrode based on ion associates of Rhodamine 6G. Mater. Sci. Eng. C 2010, 30, 997–1002. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, T.; Fu, R. Polyamidoamine dendrimers used as solubility enhancers of ketoprofen. Eur. J. Med. Chem. 2005, 40, 1390–1393. [Google Scholar] [CrossRef]
- Paine, D.C.; Whitson, T.; Janiac, D.; Beresford, R.; Yang, C.O.; Lewis, B. A study of low temperature crystallization of amorphous thin film indium–tin–oxide. J. Appl. Phys. 1999, 85, 8445–8450. [Google Scholar] [CrossRef]
- Villar, I.D.; Hernaez, M.; Zamarreño, C.R.; Sánchez, P.; Fernández-Valdivielso, C.; Arregui, F.J.; Matias, I.R. Design rules for lossy mode resonance based sensors. Appl. Opt. 2012, 51, 4298–4307. [Google Scholar] [CrossRef] [PubMed]
- Zamarreño, C.R.; Hernaez, M.; Del Villar, I.; Matias, I.R.; Arregui, F.J. Tunable humidity sensor based on ITO-coated optical fiber. Sens. Actuators B Chem. 2010, 146, 414–417. [Google Scholar] [CrossRef]
- Śmietana, M.; Dudek, M.; Koba, M.; Michalak, B. Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibres. Phys. Status Solidi A 2013, 210, 2100–2105. [Google Scholar] [CrossRef]
- Michalak, B.; Koba, M.; Śmietana, M. Silicon Nitride Overlays Deposited on Optical Fibers with RF PECVD Method for Sensing Applications: Overlay Uniformity Aspects. Acta Phys. Pol. A 2015, 127, 1587–1591. [Google Scholar] [CrossRef]
- Burnat, D.; Koba, M.; Wachnicki, Ł.; Gierałtowska, S.; Godlewski, M.; Śmietana, M. Refractive index sensitivity of optical fiber lossy-mode resonance sensors based on atomic layer deposited TiOx thin overlay. In Proceedings of the 6th European Workshop on Optical Fibre Sensors, Limerick, Ireland, 31 May–3 June 2016. [Google Scholar]
- Zamarreño, C.R.; Hernáez, M.; Del Villar, I.; Matías, I.R.; Arregui, F.J. Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sens. Actuators B Chem. 2011, 155, 290–297. [Google Scholar] [CrossRef]
- Ascorbe, J.; Corres, J.M.; Arregui, F.J.; Matías, I.R. Optical Fiber Current Transducer Using Lossy Mode Resonances for High Voltage Networks. J. Light. Technol. 2015, 33, 2504–2510. [Google Scholar] [CrossRef]
- Sobaszek, M.; Dominik, M.; Burnat, D.; Bogdanowicz, R.; Stranak, V.; Sezemsky, P.; Śmietana, M. Optical monitoring of thin film electro-polymerization on surface of ITO-coated lossy-mode resonance sensor. In Proceedings of the 25th International Conference on Optical Fiber Sensors, Jeju, Korea, 24–28 April 2017. [Google Scholar]
- Smietana, M.; Szmidt, J.; Dudek, M.; Niedzielski, P. Optical properties of diamond-like cladding for optical fibres. Diam. Relat. Mater. 2004, 13, 954–957. [Google Scholar] [CrossRef]
- Miller, D.J.; Biesinger, M.C.; McIntyre, N.S. Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: One possible mechanism for surface contamination? Surf. Interface Anal. 2002, 33, 299–305. [Google Scholar] [CrossRef]
- Wysocka, J.; Krakowiak, S.; Ryl, J. Evaluation of citric acid corrosion inhibition efficiency and passivation kinetics for aluminium alloys in alkaline media by means of dynamic impedance monitoring. Electrochim. Acta 2017, 258, 1463–1475. [Google Scholar] [CrossRef]
- Villar, I.D.; Zamarreño, C.R.; Sanchez, P.; Hernaez, M.; Valdivielso, C.F.; Arregui, F.J.; Matias, I.R. Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers. J. Opt. 2010, 12, 095503. [Google Scholar] [CrossRef]
- Zubiate, P.; Zamarreño, C.R.; Sánchez, P.; Matias, I.R.; Arregui, F.J. High sensitive and selective C-reactive protein detection by means of lossy mode resonance based optical fiber devices. Biosens. Bioelectron. 2017, 93, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Dominik, M.; Siuzdak, K.; Niedziałkowski, P.; Stranak, V.; Sezemsky, P.; Sobaszek, M.; Bogdanowicz, R.; Ossowski, T.; Śmietana, M. Annealing of indium tin oxide (ITO) coated optical fibers for optical and electrochemical sensing purposes. In Proceedings of the 2016 Electron Technology Conference, Wisla, Poland, 11–14 September 2016. [Google Scholar]
- Śmietana, M.; Sobaszek, M.; Michalak, B.; Niedziałkowski, P.; Białobrzeska, W.; Koba, M.; Sezemsky, P.; Stranak, V.; Karczewski, J.; Ossowski, T.; et al. Optical Monitoring of Electrochemical Processes with ITO-Based Lossy-Mode Resonance Optical Fiber Sensor Applied as an Electrode. J. Light. Technol. 2018, 36, 954–960. [Google Scholar] [CrossRef]
- Stranak, V.; Bogdanowicz, R.; Sezemsky, P.; Wulff, H.; Kruth, A.; Smietana, M.; Kratochvil, J.; Cada, M.; Hubicka, Z. Towards high quality ITO coatings: The impact of nitrogen admixture in HiPIMS discharges. Surf. Coat. Technol. 2018, 335, 126–133. [Google Scholar] [CrossRef]
- Del Villar, I.; Zamarreño, C.R.; Hernaez, M.; Sanchez, P.; Arregui, F.J.; Matias, I.R. Generation of Surface Plasmon Resonance and Lossy Mode Resonance by thermal treatment of ITO thin-films. Opt. Laser Technol. 2015, 69, 1–7. [Google Scholar] [CrossRef]
- Feng, L.; Oturan, N.; Hullebusch, E.D.; van Esposito, G.; Oturan, M.A. Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: Comparison of electro-Fenton and anodic oxidation processes. Environ. Sci. Pollut. Res. 2014, 21, 8406–8416. [Google Scholar] [CrossRef] [PubMed]
- Vidal, L.; Chisvert, A.; Canals, A.; Psillakis, E.; Lapkin, A.; Acosta, F.; Edler, K.J.; Holdaway, J.A.; Marken, F. Chemically surface-modified carbon nanoparticle carrier for phenolic pollutants: Extraction and electrochemical determination of benzophenone-3 and triclosan. Anal. Chim. Acta 2008, 616, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhao, N.; Hou, S.; Zhang, C. Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor. Nanomaterials 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ren, Q.; Liu, X.; Zhao, S.; Qin, Y. A simple route to fabricate controllable and stable multilayered all-MWNTs films and their applications for the detection of NADH at low potentials. Biosens. Bioelectron. 2013, 39, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Murugananthan, M.; Latha, S.S.; Bhaskar Raju, G.; Yoshihara, S. Anodic oxidation of ketoprofen—An anti-inflammatory drug using boron doped diamond and platinum electrodes. J. Hazard. Mater. 2010, 180, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhu, Y.; Chen, D.; Li, C.; Chen, S.; Ge, Z. Electrochemical biosensing platforms using poly-cyclodextrin and carbon nanotube composite. Biosens. Bioelectron. 2010, 26, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Kannan, P.; Chen, H.; Lee, V.T.-W.; Kim, D.-H. Highly sensitive amperometric detection of bilirubin using enzyme and gold nanoparticles on sol–gel film modified electrode. Talanta 2011, 86, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Oztekin, Y.; Tok, M.; Bilici, E.; Mikoliunaite, L.; Yazicigil, Z.; Ramanaviciene, A.; Ramanavicius, A. Copper nanoparticle modified carbon electrode for determination of dopamine. Electrochim. Acta 2012, 76, 201–207. [Google Scholar] [CrossRef]
- Radi, A.-E.; Muñoz-Berbel, X.; Lates, V.; Marty, J.-L. Label-free impedimetric immunosensor for sensitive detection of ochratoxin A. Biosens. Bioelectron. 2009, 24, 1888–1892. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Jeon, I.C. Studies of electrochemical behavior of SWNT-film electrodes. J. Braz. Chem. Soc. 2007, 18, 1150–1157. [Google Scholar] [CrossRef]
- Nikitin, L.N.; Vasil’kov, A.Y.; Banchero, M.; Manna, L.; Naumkin, A.V.; Podshibikhin, V.L.; Abramchuk, S.S.; Buzin, M.I.; Korlyukov, A.A.; Khokhlov, A.R. Composite materials for medical purposes based on polyvinylpyrrolidone modified with ketoprofen and silver nanoparticles. Russ. J. Phys. Chem. A 2011, 85, 1190–1195. [Google Scholar] [CrossRef]
- Bosselmann, S.; Owens, D.E.; Kennedy, R.L.; Herpin, M.J.; Williams, R.O. Plasma deposited stability enhancement coating for amorphous ketoprofen. Eur. J. Pharm. Biopharm. 2011, 78, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, N.; Lan, Y.; Yang, W.; Yang, Z.; Li, X.; Zhou, X.; Liu, Y.; Shen, J.; Zhang, X. Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads. Sep. Purif. Technol. 2017, 177, 272–280. [Google Scholar] [CrossRef]
- Thøgersen, A.; Rein, M.; Monakhov, E.; Mayandi, J.; Diplas, S. Elemental distribution and oxygen deficiency of magnetron sputtered indium tin oxide films. J. Appl. Phys. 2011, 109, 113532. [Google Scholar] [CrossRef]
- Brumbach, M.; Veneman, P.A.; Marrikar, F.S.; Schulmeyer, T.; Simmonds, A.; Xia, W.; Lee, P.; Armstrong, N.R. Surface Composition and Electrical and Electrochemical Properties of Freshly Deposited and Acid-Etched Indium Tin Oxide Electrodes. Langmuir 2007, 23, 11089–11099. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, G.; Zhi, X.; Zhu, T. Microfabrication and imaging XPS analysis of ITO thin films. Surf. Interface Anal. 2007, 39, 756–760. [Google Scholar] [CrossRef]
- Sanchez, P.; Zamarreño, C.R.; Hernaez, M.; Villar, I.D.; Fernandez-Valdivielso, C.; Matias, I.R.; Arregui, F.J. Lossy mode resonances toward the fabrication of optical fiber humidity sensors. Meas. Sci. Technol. 2012, 23, 014002. [Google Scholar] [CrossRef]
- Pickl, K.E.; Magnes, C.; Bodenlenz, M.; Pieber, T.R.; Sinner, F.M. Rapid online-SPE-MS/MS method for ketoprofen determination in dermal interstitial fluid samples from rats obtained by microdialysis or open-flow microperfusion. J. Chromatogr. B 2007, 850, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Zakeri-Milani, P.; Barzegar-Jalali, M.; Tajerzadeh, H.; Azarmi, Y.; Valizadeh, H. Simultaneous determination of naproxen, ketoprofen and phenol red in samples from rat intestinal permeability studies: HPLC method development and validation. J. Pharm. Biomed. Anal. 2005, 39, 624–630. [Google Scholar] [CrossRef] [PubMed]
Sample | Ered (mV) | Eox (mV) | ΔE (mV) | E1/2 (mV) |
---|---|---|---|---|
Bare ITO electrode | −24 | 221 | 245 | 123 |
KP/ITO electrode | −230 | 281 | 511 | 230 |
Bare ITO-LMR electrode | −165 | 254 | 419 | 210 |
KP/ITO-LMR electrode | −285 | 343 | 628 | 314 |
XPS Photopeak | Chemical State | Binding Energy (eV) | Chemical Composition (at.%) | |
---|---|---|---|---|
Bare ITO Electrode | ITO/KP Electrode | |||
C1s | C=C | 284.2 | - | 27.8 |
C–C * | 285.2 | - | 9.9 | |
C=O | 287.7 | - | 4.3 | |
O1s | ITOcryst | 530.7 | 40.5 | 13.6 |
ITOamorph | 531.7 | 12.8 | 5.5 | |
C=O | 533.1 | - | 17.3 | |
In | ITOcryst | 444.1 | 29.8 | 9.8 |
ITOamorph | 445.1 | 11.8 | 9.2 | |
Sn | ITOcryst | 486.1 | 3.7 | 1.4 |
ITOamorph | 487.0 | 1.4 | 1.2 |
KP Concentration | ΔT (a.u.) | Δλ (nm) |
---|---|---|
1 × 10−3 M | 255.2 | 1.98 |
1 × 10−4 M | 123.2 | 0.99 |
1 × 10−5 M | 113.9 | 0.6 |
1 × 10−6 M | 60.4 | 0.4 |
Technique | Details | Linear Range | Limit of Detection | Reference |
---|---|---|---|---|
Adsorptive Stripping Square Wave | Mercury electrode | 1 × 10−8–3 × 10−7 M | 0.1 ng mL−1 | [10] |
LC-APCI-MS | Single Ion Monitoring mode (SIM) | 100–500 ng/mL | 1.0 ng/mL | [3] |
IC-FLD | SnO2 nanoparticles | 0.1 µg/kg | 0.2–1.5 mg/kg | [5] |
Differential Pulse Voltammetry | Aptamer and glassy carbon electrode | 70 pM–6 µM | 20 pM | [7] |
Potentiometry | PVC electrode | 0.0001–0.05 mol/L | 6.3 × 10−5 mol/L | [11] |
Microdialisys | Short polymeric columns (SPE) | 25–5000 ng/mL | 3 ng/mL | [48] |
Flow injection | Flow injection with chemiluminescence | 5.0 × 10−8–3.0 × 10−6 mol/L | 2.0 × 10−8 mol/L | [6] |
High-Performance Liquid Chromatography | Single-pass intestinal perfusion method | 12.5–200 ng/mL | 0.05 ng/mL | [49] |
Rp-HPLC | PDA detector | 872.5 nM | 4.85–9.7 × 105 | [7] |
Differential Pulse Polarography | Dropping-mercury electrode | 1 × 10−5–5 × 10−4 M | 9.8 × 10−6 mol/L | [8] |
Polarography | Dropping-mercury electrode | 10−8–10−6M | 2.0 × 10−9 mol/L | [8] |
Stripping voltammetry | Mercury electrode | 1 × 10−8–1 × 10−7 M | 2.0 × 10−9 mol/L | [9] |
ITO-LMR probe | ITO electrode | 1 × 10−6–1 × 10−3 M | 0.5 × 10−3 mol/L | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanowicz, R.; Niedziałkowski, P.; Sobaszek, M.; Burnat, D.; Białobrzeska, W.; Cebula, Z.; Sezemsky, P.; Koba, M.; Stranak, V.; Ossowski, T.; et al. Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe. Sensors 2018, 18, 1361. https://doi.org/10.3390/s18051361
Bogdanowicz R, Niedziałkowski P, Sobaszek M, Burnat D, Białobrzeska W, Cebula Z, Sezemsky P, Koba M, Stranak V, Ossowski T, et al. Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe. Sensors. 2018; 18(5):1361. https://doi.org/10.3390/s18051361
Chicago/Turabian StyleBogdanowicz, Robert, Paweł Niedziałkowski, Michał Sobaszek, Dariusz Burnat, Wioleta Białobrzeska, Zofia Cebula, Petr Sezemsky, Marcin Koba, Vitezslav Stranak, Tadeusz Ossowski, and et al. 2018. "Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe" Sensors 18, no. 5: 1361. https://doi.org/10.3390/s18051361
APA StyleBogdanowicz, R., Niedziałkowski, P., Sobaszek, M., Burnat, D., Białobrzeska, W., Cebula, Z., Sezemsky, P., Koba, M., Stranak, V., Ossowski, T., & Śmietana, M. (2018). Optical Detection of Ketoprofen by Its Electropolymerization on an Indium Tin Oxide-Coated Optical Fiber Probe. Sensors, 18(5), 1361. https://doi.org/10.3390/s18051361