Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO2 Nanoflowers via Vacuum Annealing Treatment
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Materials Characterizations
3.2. Sensor Performance
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kahn, M.E. Fueling the future. Science 2015, 347, 239. [Google Scholar] [CrossRef]
- Sumida, S.; Okazaki, S.; Asakura, S.; Nakagawa, H.; Murayama, H.; Hasegawa, T. Distributed hydrogen determination with fiber-optic sensor. Sens. Actuators B Chem. 2005, 108, 508–514. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Han, S.D.; Stetter, J.R. Review of electrochemical hydrogen sensors. Chem. Rev. 2009, 109, 1402–1433. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Wang, Z.; Hu, Y. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures. Sensors 2012, 12, 5517–5550. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhang, C.; Zheng, B.; Geng, X.; Debliquy, M. Hydrogen sensors based on noble metal doped metal-oxide semiconductor: A review. Int. J. Hydrog. Energy 2017, 42, 20386–20397. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Z.; Hu, Y.; Luo, X.; Lei, J.; Zhou, D.; Fei, L.; Wang, Y.; Gu, H. Highly Responsive Room-Temperature Hydrogen Sensing of α-MoO3 Nanoribbon Membranes. ACS Appl. Mater. Interfaces 2015, 7, 9247–9253. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; You, K.; Hu, Y.; Yang, S.; Pan, X.; Wang, Z.; Chen, W.; Gu, H. Rapid hydrogen sensing response and aging of α-MoO3 nanowires paper sensor. Int. J. Hydrog. Energy 2017, 42, 8399–8405. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Labat, F.; Ciofini, I.; Pauporté, T.; Adelung, R. Ultra-Sensitive and Selective Hydrogen Nanosensor with Fast Response at Room Temperature Based on a Single Pd/ZnO Nanowire. Sens. Actuators B Chem. 2017, 254, 1259–1270. [Google Scholar] [CrossRef]
- Nguyen, K.; Chu, M.H.; Ngoc, T.M.; Dang, T.T.L.; Nguyen, D.H.; Van, D.N.; Van, H.N. Low-temperature prototype hydrogen sensors using Pd-decorated SnO2 nanowires for exhaled breath applications. Sens. Actuators B Chem. 2017, 253, 156–163. [Google Scholar] [CrossRef]
- Zhao, M.; Wong, M.H.; Man, H.C.; Ong, C.W. Resistive hydrogen sensing response of Pd-decorated ZnO “nanosponge” film. Sens. Actuators B Chem. 2017, 249, 624–631. [Google Scholar] [CrossRef]
- Göpel, W.; Schierbaum, K.D. SnO2 sensors: Current status and future prospects. Sens. Actuators B Chem. 1995, 26, 1–12. [Google Scholar] [CrossRef]
- Kolmakov, A.; Klenov, D.O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 2005, 5, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Sokovykh, E.V.; Oleksenko, L.P.; Maksymovych, N.P.; Matushko, I.P. Influence of Conditions of Pd/SnO2 Nanomaterial Formation on Properties of Hydrogen Sensors. Nanoscale Res. Lett. 2017, 12, 383. [Google Scholar] [CrossRef] [PubMed]
- Adamyan, A.Z.; Adamyan, Z.N.; Aroutiounian, V.M.; Arakelyan, A.H.; Touryan, K.J.; Turner, J.A. Sol–gel derived thin-film semiconductor hydrogen gas sensor. Int. J. Hydrog. Energy 2007, 32, 4101–4108. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Umar, A.; Tomar, M.; Gupta, V. Custom designed metal anchored SnO2 sensor for H2 detection. Int. J. Hydrog. Energy 2017, 42, 4597–4609. [Google Scholar] [CrossRef]
- Song, S.K.; Cho, J.S.; Choi, W.K.; Jung, H.J.; Choi, D.; Lee, J.Y.; Baik, H.K.; Koh, S.K. Structure and gas-sensing characteristics of undoped tin oxide thin films fabricated by ion-assisted deposition. Sens. Actuators B Chem. 1998, 46, 42–49. [Google Scholar] [CrossRef]
- Munasinghe, M.A.H.M.; Comini, E.; Zappa, D.; Poli, N.; Sberveglieri, G. Low Temperature Gas Sensing Properties of Graphene Oxide/SnO2 Nanowires Composite for H2. Procedia Eng. 2016, 168, 305–308. [Google Scholar] [CrossRef][Green Version]
- Wan, Q.; Wang, T.H. Single-crystalline Sb-doped SnO2 nanowires: Synthesis and gas sensor application. Chem. Commun. 2005, 30, 3841–3843. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Z.; Jiang, T.; Xu, X.; Wang, C. Ultrasensitive Hydrogen Sensor Based on Pd0-Loaded SnO2 Electrospun Nanofibers at Room Temperature. ACS Appl. Mater. Interfaces 2013, 5, 2013–2021. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yamazaki, T.; Liu, Z.; Meng, D.; Kikuta, T. Hydrogen sensors made of undoped and Pt-doped SnO2 nanowires. J. Alloys Compd. 2009, 488, L21–L25. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Z.; Hu, Y.; Cai, Y.; Huang, R.; Li, X.; Huang, Z.; Lan, Z.; Chen, W.; Gu, H. Defect-original room-temperature hydrogen sensing of MoO3 nanoribbon: Experimental and theoretical studies. Sens. Actuators B Chem. 2018, 260, 21–32. [Google Scholar] [CrossRef]
- Li, Y.; Deng, D.; Chen, N.; Xing, X.; Liu, X.; Xiao, X.; Wang, Y. Pd nanoparticles composited SnO2 microspheres as sensing materials for gas sensors with enhanced hydrogen response performances. J. Alloys Compd. 2017, 710, 216–224. [Google Scholar] [CrossRef]
- Öztürk, S.; Kılınç, N.; Torun, İ.; Kösemen, A.; Şahin, Y.; Öztürk, Z.Z. Hydrogen sensing properties of ZnO nanorods: Effects of annealing, temperature and electrode structure. Int. J. Hydrog. Energy 2014, 39, 5194–5201. [Google Scholar] [CrossRef]
- Szuber, J.; Czempik, G.; Larciprete, R.; Adamowicz, B. The comparative XPS and PYS studies of SnO2 thin films prepared by L-CVD technique and exposed to oxygen and hydrogen. Sens. Actuators B Chem. 2000, 70, 177–181. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Wang, Z.; Chen, Z.; Yang, S.; Fu, X.; Huang, R.; Li, X.; Xiong, J.; Hu, Y.; Gu, H. Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO2 Nanoflowers via Vacuum Annealing Treatment. Sensors 2018, 18, 949. https://doi.org/10.3390/s18040949
Liu G, Wang Z, Chen Z, Yang S, Fu X, Huang R, Li X, Xiong J, Hu Y, Gu H. Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO2 Nanoflowers via Vacuum Annealing Treatment. Sensors. 2018; 18(4):949. https://doi.org/10.3390/s18040949
Chicago/Turabian StyleLiu, Gao, Zhao Wang, Zihui Chen, Shulin Yang, Xingxing Fu, Rui Huang, Xiaokang Li, Juan Xiong, Yongming Hu, and Haoshuang Gu. 2018. "Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO2 Nanoflowers via Vacuum Annealing Treatment" Sensors 18, no. 4: 949. https://doi.org/10.3390/s18040949
APA StyleLiu, G., Wang, Z., Chen, Z., Yang, S., Fu, X., Huang, R., Li, X., Xiong, J., Hu, Y., & Gu, H. (2018). Remarkably Enhanced Room-Temperature Hydrogen Sensing of SnO2 Nanoflowers via Vacuum Annealing Treatment. Sensors, 18(4), 949. https://doi.org/10.3390/s18040949