Dual-Task Elderly Gait of Prospective Fallers and Non-Fallers: A Wearable-Sensor Based Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Data Processing
2.4. Data Analysis
3. Results
3.1. Gait Velocity
3.1.1. Differences between Walking Conditions
3.1.2. Differences between Prospective Fallers and Non-Fallers
3.2. Pressure-Sensing Insole Measures
3.2.1. Differences between Walking Conditions
3.2.2. Differences between Prospective Fallers and Non-Fallers
3.3. Accelerometer Measures
3.3.1. Differences between Walking Conditions
- Head, right shank, left shank
- ○
- AP: FFT first quartile
- Pelvis, right shank, left shank
- ○
- inferior: mean; anterior: maximum, mean, SD; left: mean, SD
- Head, right shank
- ○
- V: FFT first quartile
- Pelvis, right shank
- ○
- right: SD
- Pelvis, left shank
- ○
- superior: mean; posterior: mean, SD
- Right shank, left shank
- ○
- inferior: maximum, SD
- Pelvis
- ○
- posterior: maximum
- Right shank
- ○
- ML: FFT first quartile; right: maximum, mean; left: maximum
- Left shank
- ○
- AP, ML: MLE; superior: maximum, SD.
- Head, pelvis, left shank, right shank
- ○
- V: FFT first quartile; anterior: mean
- Head, right shank, left shank
- ○
- AP: FFT first quartile
- Pelvis, right shank, left shank
- ○
- ML: FFT first quartile; superior: maximum, mean, SD; inferior: maximum, mean, SD; anterior: maximum, SD; posterior: mean; right: mean, SD; left: maximum, mean, SD
- Pelvis, right shank
- ○
- right: maximum
- Pelvis, left shank
- ○
- ML: MLE
- Pelvis
- ○
- AP: REOH; posterior: maximum, SD
3.3.2. Differences between Prospective Fallers and Non-Fallers
4. Discussion
4.1. Gait Differences between Fallers and Non-Fallers
4.2. Temporally Related DT-Induced Gait Differences
4.3. Variability and Stability Related DT-Induced Gait Differences
4.4. Limitations
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lamoth, C.J.; van Deudekom, F.J.; van Campen, J.P.; Appels, B.A.; de Vries, O.J.; Pijnappels, M. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J. Neuroeng. Rehabil. 2011, 8. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Schweiger, A.; Herman, T.; Yogev-Seligmann, G.; Giladi, N. Dual-task decrements in gait: Contributing factors among healthy older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63A, 1335–1343. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Oteng-Amoako, A.; Speechley, M.; Gopaul, K.; Beauchet, O.; Annweiler, C.; Muir-Hunter, S.W. The motor signature of mild cognitive impairment: Results from the gait and brain study. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 1415–1421. [Google Scholar] [CrossRef] [PubMed]
- Priest, A.W.; Salamon, K.B.; Hollman, J.H. Age-related differences in dual task walking: A cross sectional study. J. Neuroeng. Rehabil. 2008, 5. [Google Scholar] [CrossRef] [PubMed]
- Woollacott, M.; Shumway-Cook, A. Attention and the control of posture and gait: A review of an emerging area of research. Gait Posture 2002, 16, 1–14. [Google Scholar] [CrossRef]
- Hsu, C.L.; Nagamatsu, L.S.; Davis, J.C.; Liu-Ambrose, T. Examining the relationship between specific cognitive processes and falls risk in older adults: A systematic review. Osteoporos. Int. 2012, 23, 2409–2424. [Google Scholar] [CrossRef] [PubMed]
- Bock, O.; Beurskens, R. Effect of visual distractors on the gait of elderly versus young persons. Curr. Gerontol. Geriatr. 2011. [Google Scholar] [CrossRef] [PubMed]
- Bock, O.; Beurskens, R. Age-related deficits of dual-task walking: the role of foot vision. Gait Posture 2011, 33, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Springer, S.; Giladi, N.; Peretz, C.; Yogev, G.; Simon, E.S.; Hausdorff, J.M. Dual-tasking effects on gait variability: The role of aging, falls, and executive function. Mov. Disord. 2006, 21, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Wild, L.B.; de Lima, D.B.; Balardin, J.B.; Rizzi, L.; Giacobbo, B.L.; Oliveira, H.B.; de Lima Argimon, I.I.; Peyré-Tartaruga, L.A.; Rieder, C.R.M.; Bromberg, E. Characterization of cognitive and motor performance during dual-tasking in healthy older adults and patients with Parkinson’s disease. J. Neurol. 2013, 260, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Howcroft, J.; Lemaire, E.D.; Kofman, J.; McIlroy, W.E. Analysis of dual-task elderly gait using wearable plantar-pressure insoles and accelerometer. In Proceedings of the 36th Annual International Conference of the IEEE EMBS, Chicago, IL, USA, 26–30 August 2014. [Google Scholar]
- Howcroft, J.; Kofman, J.; Lemaire, E.D.; McIlroy, W.E. Analysis of dual-task elderly gait in fallers and non-fallers using wearable sensors. J. Biomech. 2016, 49, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Krampe, R.T.; Schaefer, S.; Lindenberger, U.; Baltes, P.B. Lifespan changes in multi-tasking: Concurrent walking and memory search in children, young, and older adults. Gait Posture 2011, 33, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Menant, J.C.; Schoene, D.; Sarofim, M.; Lord, S.R. Single and dual task tests of gait speed are equivalent in the prediction of falls in older people: A systematic review and meta-analysis. Ageing Res. Rev. 2014, 16, 83–104. [Google Scholar] [CrossRef] [PubMed]
- Muir-Hunter, S.W.; Wittwer, J.E. Dual-task testing to predict falls in community-dwelling older adults: A systematic review. Physiotherapy 2016, 102, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, K.A.; Redfern, M.S.; Cauley, J.A.; Landsittel, D.P.; Studenski, S.A.; Rosano, C.; Simonsick, E.M.; Harris, T.B.; Shorr, R.I.; Ayonayon, H.N.; et al. Multitasking: Association between poorer performance and a history of recurrent falls. J. Am. Geriatr. Soc. 2007, 55, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Verghese, J.; Buschke, H.; Viola, L.; Katz, M.; Hall, C.; Kuslansky, G.; Lipton, R. Validity of divided attention tasks in predicting falls in older individuals: A preliminary study. J. Am. Geriatr. Soc. 2002, 50, 1572–1576. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Annweiler, C.; Allali, G.; Berrut, G.; Herrmann, F.R.; Dubost, V. Recurrent falls and dual task-related decrease in walking speed: Is there a relationship? J. Am. Geriatr. Soc. 2008, 56, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Muhaidat, J.; Kerr, A.; Evans, J.J.; Pilling, M.; Skelton, D.A. Validity of simple gait-related dual-task tests in predicting falls in community-dwelling older adults. Arch. Phys. Med. Rehabil. 2014, 95, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Herman, T.; Mirelman, A.; Giladi, N.; Schweiger, A.; Hausdorff, J.M. Executive control deficits as a prodrome to falls in healthy older adults: A prospective study linking thinking, walking, and falling. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65A, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Herman, T.; Brozgol, M.; Dorfman, M.; Sprecher, E.; Schweiger, A.; Giladi, N.; Hausdorff, J.M. Executive function and falls in older adults: New findings from a five-year prospective study link fall risk to cognition. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kressig, R.W.; Herrmann, F.R.; Grandjean, R.; Michel, J.-P.; Beauchet, O. Gait variability while dual-tasking: Fall predictor in older inpatients? Aging Clin. Exp. Res. 2008, 20, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Nordin, E.; Moe-Nilssen, R.; Ramnemark, A.; Lundin-Olsson, L. Changes in step-width during dual-task walking predicts falls. Gait Posture 2010, 32, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Allali, G.; Annweiler, C.; Berrut, G.; Maarouf, N.; Herrmann, F.R.; Dubost, V. Does change in gait while counting backward predict the occurrence of a first fall in older adults? Gerontology 2008, 54, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Bootsma-van der Wiel, A.; Gussekloo, J.; de Craen, A.J.M.; van Exel, E.; Bloem, B.R.; Westendorp, R.G.J. Walking and talking as predictors of falls in the general population: The Leiden 85-plus study. J. Am. Geriatr. Soc. 2003, 51, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Review of fall risk assessment in geriatric populations using inertial sensors. J. Neuroeng. Rehabil. 2013, 10. [Google Scholar] [CrossRef] [PubMed]
- van Schooten, K.S.; Pijnappels, M.; Rispens, S.M.; Elders, P.J.M.; Lips, P.; van Dieën, J.H. Ambulatory fall-risk assessment: Amount and quality of daily-life gait predict falls in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Young, W.R.; William, A.M. How fear of falling can increase fall-risk in older adults: Applying psychological theory to practical observations. Gait Posture 2015, 41, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Dawson, D.M.; Lehrich, J.R.; Beal, M.F.; Kevy, S.V.; Propper, R.D.; Mills, J.A.; Weiner, H.L. Intensive immunosuppression in progressive multiple sclerosis. A randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. N. Engl. J. Med. 1983, 308, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, M.E.; Speechley, M.; Ginter, S.F. Risk factors for falls among elderly persons living in the community. N. Eng. J. Med. 1988, 319, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Prospective fall-risk prediction models for older adults based on wearable sensors. IEEE Trans. Neural. Syst. Rehabil. Eng. 2017, 25, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Howcroft, J.; Lemaire, E.D.; Kofman, J. Wearable sensor (accelerometer, pressure sensing insole) gait data of older adults—Update with prospective falls. Available online: https://dataverse.scholarsportal.info/dataset.xhtml?persistentId=doi:10.5683/SP/VST2RC (accessed on 19 April 2018).
- Howcroft, J.; Lemaire, E.D.; Kofman, J. Prospective elderly fall prediction by older-adult fall-risk modeling with feature selection. Biomed. Signal Process. Control 2018, 43, 320–328. [Google Scholar] [CrossRef]
- Rende, B.; Ramsberger, G.; Miyake, A. Commonalities and differences in the working memory components underlying letter and category fluency tasks: A dual-task investigation. Neuropsychology 2002, 16, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar]
- Howcroft, J.; Lemaire, E.D.; Kofman, J. Wearable-sensor-based classification models of faller status in older adults. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Comfortable and maximum walking speed of adults aged 20–79 years: Reference values and determinants. Age Ageing 1997, 26, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, N.; Buzzi, U.H.; Kurz, M.J.; Heidel, J. Nonlinear tools in human movement. In Innovative Analyses of Human Movement: Analytical Tools for Human Movement Research; Stergiou, N., Ed.; Human Kinetics: Champaign, IL, USA, 2004; pp. 63–90. [Google Scholar]
Fallers | Non-Fallers | |||||
---|---|---|---|---|---|---|
ST | DT | p | ST | DT | p | |
CoP Path | ||||||
PD per Stride | 1.8 ± 2.7 | 2.6 ± 3.1 | <0.001 | 1.5 ± 2.0 | 2.5 ± 2.1 | <0.001 |
Lateral Deviation Length (mm) | 0.9 ± 0.6 | 1.1 ± 0.7 | 0.165 | 1.0 ± 1.2 | 1.4 ± 1.4 | 0.051 |
Medial–Lateral (ML) Deviation Duration (s) | 0.029 ± 0.013 | 0.038 ± 0.014 | 0.029 | 0.031 ± 0.015 | 0.037 ± 0.017 | 0.019 |
Min Centre of Pressure (CoP) Velocity (m/s) | 0.028 ± 0.010 | 0.021 ± 0.009 | 0.001 | 0.031 ± 0.012 | 0.023 ± 0.010 | <0.001 |
Mean CoP Velocity (m/s) | 0.284 ± 0.038 | 0.249 ± 0.044 | <0.001 | 0.293 ± 0.048 | 0.250 ± 0.049 | <0.001 |
Median CoP Velocity (m/s) | 0.247 ± 0.034 | 0.208 ± 0.035 | <0.001 | 0.250 ± 0.041 | 0.213 ± 0.047 | <0.001 |
Temporal | ||||||
Cadence (steps/minute) | 109.6 ± 10.0 | 98.4 ± 12.9 | <0.001 | 111.9 ± 10.5 | 96.4 ± 14.9 | <0.001 |
Stride Time (s) | 1.11 ± 0.10 | 1.24 ± 0.18 | <0.001 | 1.09 ± 0.11 | 1.28 ± 0.21 | <0.001 |
Stance Time (s) | 0.73 ± 0.09 | 0.83 ± 0.13 | <0.001 | 0.72 ± 0.09 | 0.84 ± 0.15 | <0.001 |
Swing Time (s) | 0.38 ± 0.05 | 0.42 ± 0.07 | <0.001 | 0.37 ± 0.06 | 0.44 ± 0.07 | <0.001 |
Stride Time CoV | 0.03 ± 0.03 | 0.04 ± 0.02 | 0.031 | 0.03 ± 0.01 | 0.04 ± 0.02 | <0.001 |
Stride Time Symmetry Index | 2.13 ± 1.14 | 2.95 ± 1.79 | 0.005 | 2.18 ± 1.41 | 2.86 ± 1.50 | 0.026 |
CoP Path Stance Phase CoV | ||||||
CoV Anterior–Posterior (AP) | 4.90 ± 1.63 | 5.22 ± 1.42 | 0.248 | 4.48 ± 1.54 | 6.17 ± 2.21 | <0.001 |
CoV ML | 6.57 ± 2.44 | 7.39 ± 2.60 | 0.059 | 6.66 ± 2.33 | 7.70 ± 2.96 | 0.007 |
Impulse (Ns/kg) | ||||||
Foot-strike to first peak (I1) | 1.22 ± 0.41 | 1.40 ± 0.52 | 0.009 | 1.20 ± 0.50 | 1.50 ± 0.66 | <0.001 |
First peak to min (I2) | 1.22 ± 0.48 | 1.10 ± 0.49 | 0.004 | 1.27 ± 0.49 | 1.24 ± 0.51 | 0.435 |
Min to second peak (I3) | 1.83 ± 0.66 | 1.95 ± 0.79 | 0.219 | 1.58 ± 0.61 | 1.68 ± 0.63 | 0.111 |
Second peak to foot-off (I4) | 1.14 ± 0.41 | 1.43 ± 0.71 | 0.014 | 1.05 ± 0.49 | 1.41 ± 0.85 | <0.001 |
Foot-strike to min (I5) | 2.36 ± 0.79 | 2.42 ± 0.86 | 0.554 | 2.44 ± 0.99 | 2.66 ± 0.90 | 0.001 |
Min to foot-off (I6) | 2.89 ± 1.00 | 3.30 ± 1.24 | 0.009 | 2.56 ± 0.98 | 3.01 ± 1.30 | <0.001 |
Foot-strike to foot-off (I7) | 5.19 ± 1.62 | 5.66 ± 1.89 | 0.026 | 4.89 ± 1.74 | 5.61 ± 2.01 | <0.001 |
Fallers | Non-Fallers | |||||
---|---|---|---|---|---|---|
ST | DT | p | ST | DT | p | |
Fast Fourier Transform (FFT) First Quartile (%) | ||||||
Vertical | 45.0 ± 13.0 | 37.6 ± 10.0 | 0.009 | 46.4 ± 13.7 | 39.3 ± 12.9 | <0.001 |
AP | 50.4 ± 9.9 | 44.0 ± 7.3 | 0.011 | 53.5 ± 10.5 | 49.3 ± 10.4 | <0.001 |
ML | 56.3 ± 10.1 | 50.5 ± 10.8 | 0.065 | 54.7 ± 12.4 | 50.6 ± 11.1 | 0.033 |
Ratio of Even to Odd Harmonics | ||||||
Vertical | 2.17 ± 0.58 | 1.99 ± 0.94 | 0.210 | 2.17 ± 1.12 | 1.77 ± 0.92 | 0.033 |
AP | 1.90 ± 0.78 | 1.45 ± 0.63 | 0.033 | 1.60 ± 0.83 | 1.50 ± 0.61 | 0.420 |
Maximum Lyapunov Exponent | ||||||
ML | 0.24 ± 0.09 | 0.30 ± 0.10 | 0.088 | 0.25 ± 0.09 | 0.27 ± 0.12 | 0.391 |
Acceleration Descriptive Statistics (g) | ||||||
Superior Max | 0.27 ± 0.08 | 0.33 ± 0.08 | 0.001 | 0.23 ± 0.07 | 0.29 ± 0.09 | 0.001 |
Superior Mean | 0.11 ± 0.04 | 0.13 ± 0.03 | 0.002 | 0.10 ± 0.03 | 0.12 ± 0.03 | 0.005 |
Superior SD | 0.07 ± 0.02 | 0.08 ± 0.02 | 0.006 | 0.06 ± 0.02 | 0.08 ± 0.02 | 0.005 |
Anterior Mean | 0.14 ± 0.07 | 0.11 ± 0.05 | 0.106 | 0.15 ± 0.06 | 0.12 ± 0.06 | 0.014 |
Right Max | 0.27 ± 0.10 | 0.29 ± 0.10 | 0.179 | 0.25 ± 0.12 | 0.30 ± 0.12 | 0.003 |
Right Mean | 0.11 ± 0.05 | 0.13 ± 0.05 | 0.084 | 0.11 ± 0.05 | 0.13 ± 0.05 | 0.004 |
Right SD | 0.07 ± 0.02 | 0.08 ± 0.03 | 0.151 | 0.07 ± 0.03 | 0.08 ± 0.03 | 0.002 |
Fallers | Non-Fallers | |||||
---|---|---|---|---|---|---|
ST | DT | p | ST | DT | p | |
Fast Fourier Transform (FFT) First Quartile (%) | ||||||
Vertical | 32.9 ± 10.6 | 26.3 ± 9.4 | 0.014 | 34.8 ± 10.0 | 26.5 ± 9.1 | <0.001 |
AP | 40.7 ± 8.5 | 37.4 ± 7.8 | 0.076 | 43.0 ± 9.8 | 40.0 ± 7.9 | 0.072 |
ML | 32.7 ± 11.4 | 29.5 ± 9.6 | 0.072 | 34.1 ± 10.6 | 29.3 ± 10.3 | 0.003 |
Ratio of Even to Odd Harmonics | ||||||
Vertical | 2.20 ± 0.84 | 2.00 ± 0.74 | 0.151 | 2.25 ± 0.85 | 1.94 ± 0.79 | 0.071 |
AP | 2.11 ± 0.76 | 1.86 ± 0.77 | 0.088 | 2.23 ± 0.86 | 1.90 ± 0.67 | 0.037 |
Maximum Lyapunov Exponent | ||||||
ML | 0.28 ± 0.12 | 0.24 ± 0.10 | 0.295 | 0.25 ± 0.11 | 0.21 ± 0.10 | 0.037 |
Acceleration Descriptive Statistics (g) | ||||||
Superior Max | 0.32 ± 0.08 | 0.30 ± 0.09 | 0.569 | 0.31 ± 0.10 | 0.28 ± 0.10 | 0.011 |
Superior Mean | 0.11 ± 0.03 | 0.09 ± 0.03 | 0.013 | 0.11 ± 0.03 | 0.09 ± 0.03 | 0.001 |
Superior SD | 0.08 ± 0.02 | 0.07 ± 0.02 | 0.045 | 0.08 ± 0.02 | 0.07 ± 0.02 | <0.001 |
Inferior Max | 0.45 ± 0.09 | 0.41 ± 0.14 | 0.029 | 0.44 ± 0.13 | 0.37 ± 0.15 | <0.001 |
Inferior Mean | 0.15 ± 0.03 | 0.14 ± 0.04 | 0.023 | 0.16 ± 0.05 | 0.13 ± 0.05 | <0.001 |
Inferior SD | 0.12 ± 0.02 | 0.11 ± 0.03 | 0.032 | 0.12 ± 0.03 | 0.10 ± 0.04 | <0.001 |
Anterior Max | 0.42 ± 0.12 | 0.37 ± 0.12 | 0.004 | 0.48 ± 0.17 | 0.38 ± 0.14 | <0.001 |
Anterior Mean | 0.15 ± 0.04 | 0.13 ± 0.04 | 0.020 | 0.17 ± 0.06 | 0.14 ± 0.04 | <0.001 |
Anterior SD | 0.12 ± 0.03 | 0.10 ± 0.03 | 0.001 | 0.13 ± 0.05 | 0.10 ± 0.04 | <0.001 |
Posterior Max | 0.31 ± 0.10 | 0.27 ± 0.08 | 0.018 | 0.28 ± 0.12 | 0.25 ± 0.11 | 0.028 |
Posterior Mean | 0.12 ± 0.03 | 0.10 ± 0.03 | 0.004 | 0.11 ± 0.05 | 0.10 ± 0.04 | 0.011 |
Posterior SD | 0.08 ± 0.02 | 0.07 ± 0.02 | 0.015 | 0.07 ± 0.03 | 0.06 ± 0.03 | 0.005 |
Right Max | 0.40 ± 0.11 | 0.37 ± 0.15 | 0.053 | 0.38 ± 0.13 | 0.31 ± 0.12 | <0.001 |
Right Mean | 0.13 ± 0.03 | 0.12 ± 0.04 | 0.050 | 0.13 ± 0.04 | 0.10 ± 0.03 | <0.001 |
Right SD | 0.11 ± 0.03 | 0.10 ± 0.05 | 0.021 | 0.10 ± 0.03 | 0.08 ± 0.03 | <0.001 |
Left Max | 0.40 ± 0.08 | 0.36 ± 0.09 | 0.068 | 0.39 ± 0.13 | 0.33 ± 0.14 | <0.001 |
Left Mean | 0.13 ± 0.03 | 0.11 ± 0.03 | 0.005 | 0.13 ± 0.04 | 0.10 ± 0.04 | <0.001 |
Left SD | 0.10 ± 0.02 | 0.09 ± 0.02 | 0.020 | 0.10 ± 0.03 | 0.08 ± 0.03 | <0.001 |
Fallers | Non-Fallers | |||||
---|---|---|---|---|---|---|
ST | DT | p | ST | DT | p | |
Fast Fourier Transform (FFT) First Quartile (%) | ||||||
Vertical | 38.6 ± 11.4 | 29.9 ± 10.2 | 0.006 | 39.3 ± 12.7 | 30.2 ± 10.9 | <0.001 |
AP | 27.3 ± 8.1 | 20.7 ± 6.0 | 0.005 | 29.9 ± 8.8 | 22.1 ± 7.6 | <0.001 |
ML | 25.9 ± 7.6 | 20.0 ± 6.3 | 0.002 | 28.2 ± 8.0 | 21.3 ± 6.4 | <0.001 |
Maximum Lyapunov Exponent | ||||||
AP | 0.50 ± 0.15 | 0.43 ± 0.13 | 0.059 | 0.48 ± 0.15 | 0.43 ± 0.15 | 0.058 |
Acceleration Descriptive Statistics (g) | ||||||
Superior Max | 0.47 ± 0.18 | 0.46 ± 0.16 | 0.762 | 0.56 ± 0.19 | 0.48 ± 0.17 | <0.001 |
Superior Mean | 0.15 ± 0.04 | 0.14 ± 0.04 | 0.600 | 0.18 ± 0.06 | 0.15 ± 0.05 | 0.010 |
Superior SD | 0.12 ± 0.04 | 0.12 ± 0.04 | 0.189 | 0.15 ± 0.05 | 0.12 ± 0.05 | <0.001 |
Inferior Max | 0.74 ± 0.32 | 0.65 ± 0.27 | 0.014 | 0.82 ± 0.31 | 0.65 ± 0.24 | <0.001 |
Inferior Mean | 0.21 ± 0.08 | 0.18 ± 0.07 | 0.001 | 0.22 ± 0.07 | 0.18 ± 0.07 | <0.001 |
Inferior SD | 0.20 ± 0.09 | 0.16 ± 0.07 | 0.001 | 0.22 ± 0.08 | 0.17 ± 0.07 | <0.001 |
Anterior Max | 1.58 ± 0.44 | 1.32 ± 0.40 | 0.004 | 1.71 ± 0.58 | 1.26 ± 0.60 | <0.001 |
Anterior Mean | 0.40 ± 0.08 | 0.33 ± 0.08 | 0.001 | 0.44 ± 0.14 | 0.32 ± 0.13 | <0.001 |
Anterior SD | 0.44 ± 0.13 | 0.34 ± 0.12 | 0.001 | 0.49 ± 0.18 | 0.34 ± 0.18 | <0.001 |
Posterior Mean | 0.29 ± 0.07 | 0.28 ± 0.06 | 0.412 | 0.31 ± 0.09 | 0.28 ± 0.08 | <0.001 |
Right Max | 0.57 ± 0.20 | 0.47 ± 0.16 | 0.007 | 0.61 ± 0.21 | 0.51 ± 0.19 | <0.001 |
Right Mean | 0.17 ± 0.05 | 0.14 ± 0.05 | 0.011 | 0.18 ± 0.06 | 0.15 ± 0.06 | 0.001 |
Right SD | 0.15 ± 0.05 | 0.12 ± 0.04 | 0.002 | 0.16 ± 0.06 | 0.13 ± 0.05 | <0.001 |
Left Max | 0.71 ± 0.33 | 0.64 ± 0.27 | 0.068 | 0.77 ± 0.31 | 0.62 ± 0.24 | <0.001 |
Left Mean | 0.23 ± 0.11 | 0.20 ± 0.09 | 0.019 | 0.25 ± 0.10 | 0.19 ± 0.07 | <0.001 |
Left SD | 0.22 ± 0.12 | 0.18 ± 0.09 | 0.002 | 0.24 ± 0.10 | 0.18 ± 0.08 | <0.001 |
Fallers | Non-Fallers | |||||
---|---|---|---|---|---|---|
ST | DT | p | ST | DT | p | |
Fast Fourier Transform (FFT) First Quartile (%) | ||||||
Vertical | 34.8 ± 12.9 | 28.9 ± 11.7 | 0.046 | 37.9 ± 12.7 | 29.6 ± 10.3 | <0.001 |
AP | 26.4 ± 8.3 | 20.8 ± 7.0 | 0.005 | 28.4 ± 8.3 | 21.6 ± 7.1 | <0.001 |
ML | 21.5 ± 7.4 | 17.3 ± 4.9 | 0.056 | 25.3 ± 8.6 | 19.5 ± 7.6 | <0.001 |
Ratio of Even to Odd Harmonics | ||||||
Vertical | 1.27 ± 0.43 | 1.11 ± 0.25 | 0.056 | 1.17 ± 0.31 | 1.22 ± 0.40 | 0.482 |
Maximum Lyapunov Exponent | ||||||
AP | 0.48 ± 0.16 | 0.38 ± 0.16 | 0.011 | 0.45 ± 0.13 | 0.43 ± 0.15 | 0.544 |
ML | 0.38 ± 0.17 | 0.27 ± 0.14 | 0.003 | 0.37 ± 0.16 | 0.30 ± 0.15 | 0.010 |
Acceleration Descriptive Statistics (g) | ||||||
Superior Max | 0.70 ± 0.34 | 0.60 ± 0.26 | 0.015 | 0.71 ± 0.31 | 0.56 ± 0.26 | <0.001 |
Superior Mean | 0.20 ± 0.06 | 0.17 ± 0.05 | 0.004 | 0.21 ± 0.08 | 0.17 ± 0.06 | <0.001 |
Superior SD | 0.19 ± 0.09 | 0.16 ± 0.07 | 0.005 | 0.20 ± 0.09 | 0.15 ± 0.08 | <0.001 |
Inferior Max | 0.82 ± 0.28 | 0.75 ± 0.23 | 0.027 | 0.85 ± 0.28 | 0.76 ± 0.26 | 0.001 |
Inferior Mean | 0.20 ± 0.06 | 0.18 ± 0.05 | 0.003 | 0.22 ± 0.07 | 0.18 ± 0.06 | <0.001 |
Inferior SD | 0.21 ± 0.07 | 0.18 ± 0.06 | 0.003 | 0.23 ± 0.08 | 0.18 ± 0.07 | <0.001 |
Anterior Max | 1.49 ± 0.45 | 1.22 ± 0.40 | 0.001 | 1.58 ± 0.41 | 1.25 ± 0.45 | <0.001 |
Anterior Mean | 0.42 ± 0.11 | 0.32 ± 0.10 | <0.001 | 0.45 ± 0.14 | 0.33 ± 0.12 | <0.001 |
Anterior SD | 0.44 ± 0.15 | 0.34 ± 0.13 | <0.001 | 0.47 ± 0.13 | 0.34 ± 0.14 | <0.001 |
Posterior Mean | 0.28 ± 0.06 | 0.24 ± 0.06 | <0.001 | 0.28 ± 0.08 | 0.26 ± 0.09 | 0.008 |
Posterior SD | 0.27 ± 0.08 | 0.25 ± 0.07 | 0.011 | 0.27 ± 0.08 | 0.27 ± 0.10 | 0.516 |
Right Mean | 0.21 ± 0.07 | 0.19 ± 0.05 | 0.068 | 0.20 ± 0.05 | 0.18 ± 0.05 | <0.001 |
Right SD | 0.22 ± 0.09 | 0.20 ± 0.07 | 0.065 | 0.21 ± 0.06 | 0.19 ± 0.07 | 0.039 |
Left Max | 0.78 ± 0.33 | 0.67 ± 0.25 | 0.010 | 0.82 ± 0.33 | 0.65 ± 0.29 | <0.001 |
Left Mean | 0.20 ± 0.07 | 0.17 ± 0.06 | 0.005 | 0.23 ± 0.09 | 0.18 ± 0.07 | <0.001 |
Left SD | 0.20 ± 0.08 | 0.16 ± 0.07 | 0.004 | 0.22 ± 0.10 | 0.16 ± 0.08 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Howcroft, J.; Lemaire, E.D.; Kofman, J.; McIlroy, W.E. Dual-Task Elderly Gait of Prospective Fallers and Non-Fallers: A Wearable-Sensor Based Analysis. Sensors 2018, 18, 1275. https://doi.org/10.3390/s18041275
Howcroft J, Lemaire ED, Kofman J, McIlroy WE. Dual-Task Elderly Gait of Prospective Fallers and Non-Fallers: A Wearable-Sensor Based Analysis. Sensors. 2018; 18(4):1275. https://doi.org/10.3390/s18041275
Chicago/Turabian StyleHowcroft, Jennifer, Edward D. Lemaire, Jonathan Kofman, and William E. McIlroy. 2018. "Dual-Task Elderly Gait of Prospective Fallers and Non-Fallers: A Wearable-Sensor Based Analysis" Sensors 18, no. 4: 1275. https://doi.org/10.3390/s18041275