Seeker-Azimuth Determination with Gyro Rotor and Optoelectronic Sensors
Abstract
:1. Introduction
2. Model of Black and White Right Spherical Triangle Graphics on the Gyro Rotor
3. One-Dimensional Rotation
4. Two-Dimensional Rotation
4.1. Duty Ratio
4.2. Duty Ratio
5. Numerical Solution
6. Experimental Results
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Bar-Itzhack, I.Y. New Inertial Azimuth Finder Apparatus. J. Guid. Control Dyn. 2001, 24, 206–213. [Google Scholar] [CrossRef]
- Carroll, J.E. An Automatic Instrument for the Determination of Astro-Azimuth. J. Spacecr. 1970, 7, 1332–1337. [Google Scholar] [CrossRef]
- Leng, Q.; Wang, Y.; Gao, Z.; Teng, Y. Design of a Magnetic Torquing System for an ESG North Finder. IEEE Trans. Magn. 1997, 33, 4005–4007. [Google Scholar] [CrossRef]
- Benso, W.E.; Duplessis, R.M. Effect of Shipboard Inertial Navigation System Position and Azimuth Errors on Sea-Launched Missile Radial Miss. IEEE Trans. Mil. Electron. 1963, 7, 45–56. [Google Scholar] [CrossRef]
- Luo, J.; Wang, Z.; Shen, C.; Kuijper, A.; Wen, Z.; Liu, S. Modeling and Implementation of Multi-Position Non-Continuous Rotation Gyroscope North Finder. Sensors 2016, 16, 1513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, C. Fiber Optic Gyroscope Dynamic North-Finder Algorithm Modeling and Analysis Based on Simulink. Photonic Sens. 2017, 7, 283–288. [Google Scholar] [CrossRef]
- Guo, G.; Liu, H.; Zhang, B. Aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space. Appl. Opt. 2016, 55, 4741. [Google Scholar] [CrossRef] [PubMed]
- Siouris, G.M. Missile Guidance and Control Systems; Springer: New York, NY, USA, 2004. [Google Scholar]
- Yrfanean, A.R.; Mosavi, M.R.; Mohammadi, A.; Yasin, S.Y.A. Improving the Target Position Detection in the Crossed Array Detectors Seeker by Categorizing the FOV up to the Pulses Distribution. Int. J. Comput. Appl. 2013, 72, 28–36. [Google Scholar]
- Mohammadi, A.; Erfanian, A.R.; Mosavi, M.R.; Yasin, S.A. Design and Simulation a New Unique-Slit Reticle for Pulsed Infrared Seekers. J. Opt. Soc. Korea 2014, 18, 1–8. [Google Scholar]
- Chuprakov, A.M.; Gurevich, M.S.; Shustov, N.Y.; Eskin, V.N. Trispectral target seeker for an optical homing head. J. Opt. Technol. 2002, 69, 648–651. [Google Scholar]
- Alchekhyasin, S.Y.; Yrfanean, A.R.; Mosavi, M.R.; Mohammadi, A. Modeling and Simulation of the Active Jammer Effect in the Crossed Array Detectors Infrared Seeker. Int. J. Comput. Appl. 2014, 72, 15–22. [Google Scholar] [CrossRef]
- Bakshi, U.A.; Bakshi, A.V. Electromagnetic Theory; Technical Publications: Pune, India, 2009. [Google Scholar]
- Yariv, A. Optical Electronics in Modern Communications; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Jakkam, A.; Tatavarti, A.; Pachiyappan, A.; Rao, T.; Shanmuka, R.S. Optoelectronic Sensor on Moving Platforms for Monitoring Environmental Parameters. Opt. Sens. 2013. [Google Scholar] [CrossRef]
- Alymov, O.V.; Levko, G.V. Photodetector sensors and devices for television and optoelectronic video-information systems. J. Opt. Technol. 2012, 79, 744–747. [Google Scholar] [CrossRef]
- Hayasaki, Y.; Hikosaka, E.; Yamamoto, H.; Nishida, N. Optical Image Processing by Use of an Optoelectronic Feedback System with an Electronic Distortion Correction. Opt. Express 2005, 13, 4657–4665. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y. A New Algorithm of Rapid and Precise Position and Azimuth Determination Based on Vehicular Optical-electronic Detector. In Proceedings of the the Ninth International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; pp. 1032–1035. [Google Scholar]
- Eriksson, K.; Estep, D.; Johnson, C. Polynomial Functions; Springer: Berlin/Heidelberg, Germany, 2004; pp. 119–139. [Google Scholar]
- Kelley, C.T. Solving Nonlinear Equations with Newton’s Method; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2003. [Google Scholar]
Working State | Rotation about OY-Axis | Rotation about OZ-Axis | Duty Ratios |
---|---|---|---|
State 1 | Counter-clockwise | Counter-clockwise | , |
State 2 | Clockwise | Counter-clockwise | , |
State 3 | Clockwise | Clockwise | , |
State 4 | Counter-clockwise | Clockwise | , |
Working State | State 1 | State 2 | State 3 | State 4 |
---|---|---|---|---|
Linearity error | 0.00265 | 0.00276 | 0.00341 | 0.00363 |
ICC under different experiments | 0.93070 | 0.95225 | 0.96829 | 0.96147 |
Hysteresis error | 0.00226 | 0.00177 | 0.00208 | 0.00246 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.-M.; Zhao, G.; Rong, H.-J.; Wang, X. Seeker-Azimuth Determination with Gyro Rotor and Optoelectronic Sensors. Sensors 2018, 18, 1256. https://doi.org/10.3390/s18041256
Bai J-M, Zhao G, Rong H-J, Wang X. Seeker-Azimuth Determination with Gyro Rotor and Optoelectronic Sensors. Sensors. 2018; 18(4):1256. https://doi.org/10.3390/s18041256
Chicago/Turabian StyleBai, Jian-Ming, Guangshe Zhao, Hai-Jun Rong, and Xianhua Wang. 2018. "Seeker-Azimuth Determination with Gyro Rotor and Optoelectronic Sensors" Sensors 18, no. 4: 1256. https://doi.org/10.3390/s18041256
APA StyleBai, J.-M., Zhao, G., Rong, H.-J., & Wang, X. (2018). Seeker-Azimuth Determination with Gyro Rotor and Optoelectronic Sensors. Sensors, 18(4), 1256. https://doi.org/10.3390/s18041256