Sulfide Species Optical Monitoring by a Miniaturized Silicon Photomultiplier
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Silicon Photomultiplier System Measurement Setup
2.3. Sulfide Amount Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Petralia, S.; Castagna, M.E.; Cappello, E.; Puntoriero, F.; Trovato, E.; Gagliano, A.; Conoci, S. A miniaturized silicon based device for Nucleic Acids electrochemical Detection. Sens. Biosens. Res. 2015, 6, 90–94. [Google Scholar] [CrossRef][Green Version]
- Libertino, S.; Conoci, S.; Scandurra, A.; Spinella, C. Biosensor integration on Si-based devices: Feasibility studies and examples. Sens. Actuators B Chem. 2013, 179, 240–251. [Google Scholar] [CrossRef]
- Banna, M.H.; Imran, S.; Francisque, A.; Najjaran, H.; Sadiq, R.; Rodriguez, M.; Hoorfar, M. Online drinking water quality monitoring: Review on available and emerging technologies. Crit. Rev. Environ. Sci. Technol. 2014, 44, 1370–1421. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C.; Mason, A. (Eds.) Smart Sensors for Real-Time Water Quality Monitoring; Springer: Berlin, Germany, 2013; ISBN 978-3-642-37006-9. [Google Scholar]
- Doujaiji, B.; Al-Tawfiq, J.A. Hydrogen sulfide exposure in an adult male. Ann. Saudi Med. 2010, 30, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Grech, T.; Fiorenza, F.; Marletta, A.; Valenti, P.; Petralia, S. Sulfidic spring in the gypsum karst system of Monte Conca (Italy): Chemistry and microbiological evidences. Int. J. Speleol. 2015, 44, 125–139. [Google Scholar] [CrossRef]
- Lawrence, N.S.; Davis, J.; Compton, R.G. Analytical strategies for the detection of sulfide: A review. Talanta 2000, 52, 771–784. [Google Scholar] [CrossRef]
- Chena, C.; Zhao, D.; Lu, L.; Yang, F.; Yang, X. A simple and rapid colorimetric sensor for sulfide anion detection based on redox reaction of ABTS with Au (III). Sens. Actuators B Chem. 2015, 220, 1247–1253. [Google Scholar] [CrossRef]
- Pandey, S.K.; Kim, K.H.; Tang, K.T. A review of sensor-based methods for monitoring hydrogen sulfide. Trends Anal. Chem. 2012, 32, 87–99. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, C.J.; Tao, T.; Duan, M.; Fang, S.W.; Zheng, M. A miniaturized fiber-optic colorimetric sensor for nitrite determination by coupling with a microfluidic capillary waveguide. Anal. Bioanal. Chem. 2016, 408, 3413–3423. [Google Scholar] [CrossRef] [PubMed]
- Mazzillo, M.; Condorelli, G.; Sanfilippo, D.; Valvo, G.; Carbone, B.; Fallica, G.; Billotta, S.; Belluso, M.; Bonanno, G.; Cosentino, L.; et al. Silicon photomultiplier technology at Stmicroelectronics. IEEE Trans. Nucl. Sci. 2009, 56, 2434–2442. [Google Scholar] [CrossRef]
- Sciacca, E.; Giudice, A.C.; Sanfilippo, D.; Zappa, F.; Lombardo, S.; Consentino, R.; Di Franco, C.; Ghioni, M.; Fallica, G.; Bonanno, G.; et al. Silicon Planar Technology for Single-Photon Optical Detectors. IEEE Trans. Electron Devices 2003, 50, 918–925. [Google Scholar] [CrossRef]
- Santangelo, M.F.; Sciuto, E.L.; Lombardo, S.A.; Busacca, A.C.; Petralia, S.; Conoci, S. Novel Si-based technologies for bio-sensing applications, S. Libertino. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 6900307. [Google Scholar] [CrossRef]
- Santangelo, M.F.; Sciuto, E.L.; Busacca, A.C.; Petralia, S.; Conoci, S.; Libertino, S. SiPM as miniaturised optical biosensor for DNA-microarray applications. Sens. Biosens. Res. 2015, 6, 95–98. [Google Scholar] [CrossRef]
- Pagano, R.; Corso, D.; Lombardo, S.; Libertino, S.; Valvo, G.; Sanfilippo, D.; Russo, A.; Fallica, P.G.; Pappalardo, A.; Finocchiaro, P. Optimized silicon photomultipliers with optical trenches. In Proceedings of the IEEE European Solid-State Device Research, Helsinki, Finland, 12–16 September 2011; p. 183. [Google Scholar] [CrossRef]
- Cline, J.D. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 1969, 14, 454–458. [Google Scholar] [CrossRef]
- Kuban, V.; Dasgupta, P.K.; Marx, J.N. Nitroprusside and methylene blue methods for silicone membrane differentiated flow injection determination of sulfide in water and wastewater. Anal. Chem. 1992, 64, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Spanziani, M.A.; Davis, J.L.; Tinani, M.; Carroll, M.K. On-line Determination of Sulfide by the ‘Methylene Blue Method’ With Diode-laser-based Fluorescence Detection. Analyst 1997, 122, 1555–1557. [Google Scholar] [CrossRef]
- Lawrence, N.S.; Davis, J.; Jiang, L.; Jones, T.G.J.; Davies, S.N.; Compton, R.G. The electrochemical analog of the methylene blue reaction: A novel amperometric approach to the detection of hydrogen sulfide. Electroanalysis 2000, 12, 1453–1460. [Google Scholar] [CrossRef]
- Lawrence, N.S.; Davis, J.; Marken, F.; Jiang, L.; Jones, T.G.J.; Davies, S.N.; Compton, R.G. Electrochemical detection of sulphide: A novel dual flow cell. Sens. Actuators B Chem. 2000, 69, 189–192. [Google Scholar] [CrossRef]
- Tang, D.; Santschi, P.H. Sensitive determination of dissolved sulfide in estuarine water by solid-phase extraction and high-performance liquid chromatography of methylene blue. J. Chromatogr. A. 2000, 883, 305–309. [Google Scholar] [CrossRef]
- Liang, Z.; Tsoi, T.H.; Chan, C.F.; Dai, L.; Wu, Y.; Du, G.; Zhu, L.; Lee, C.S.; Wong, W.T.; Law, G.L.; et al. A smart “off–on” gate for the in situ detection of hydrogen sulphide with Cu(II)-assisted europium emission. Chem. Sci. 2016, 7, 2151–2156. [Google Scholar] [CrossRef]
- Italian Law D.L. 152/06. Available online: http://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2006-04-14&atto.codiceRedazionale=006G0171 (accessed on 10 January 2018).
Sample | SiPM Current Intensity (µA) | Sulfide mg/L by SiPM | Sulfide mg/L by UV-Vis |
---|---|---|---|
1 | 52.5 ± 2.2 | 6.4 ± 0.8 | 6.2 ± 0.5 |
2 | 62.9 ± 1.9 | 8.0 ± 0.7 | 7.5 ± 0.5 |
3 | 77.5 ± 2.0 | 9.9 ± 0.7 | 9.5 ± 0.6 |
4 | 79.3 ± 2.3 | 10.2 ± 0.5 | 10.7 ± 0.5 |
5 * | 87.9 ± 2.1 | 11.4 ± 0.7 | 13.0 ± 0.5 |
6 * | 100.0 ± 2.5 | 13.2 ± 0.8 | 14.3 ± 0.4 |
7 * | 109.0 ± 2.4 | 14.5 ± 0.7 | 16.0 ± 0.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petralia, S.; Sciuto, E.L.; Santangelo, M.F.; Libertino, S.; Messina, M.A.; Conoci, S. Sulfide Species Optical Monitoring by a Miniaturized Silicon Photomultiplier. Sensors 2018, 18, 727. https://doi.org/10.3390/s18030727
Petralia S, Sciuto EL, Santangelo MF, Libertino S, Messina MA, Conoci S. Sulfide Species Optical Monitoring by a Miniaturized Silicon Photomultiplier. Sensors. 2018; 18(3):727. https://doi.org/10.3390/s18030727
Chicago/Turabian StylePetralia, Salvatore, Emanuele Luigi Sciuto, Maria Francesca Santangelo, Sebania Libertino, Maria Anna Messina, and Sabrina Conoci. 2018. "Sulfide Species Optical Monitoring by a Miniaturized Silicon Photomultiplier" Sensors 18, no. 3: 727. https://doi.org/10.3390/s18030727
APA StylePetralia, S., Sciuto, E. L., Santangelo, M. F., Libertino, S., Messina, M. A., & Conoci, S. (2018). Sulfide Species Optical Monitoring by a Miniaturized Silicon Photomultiplier. Sensors, 18(3), 727. https://doi.org/10.3390/s18030727