Next Article in Journal
Circular Array of Magnetic Sensors for Current Measurement: Analysis for Error Caused by Position of Conductor
Previous Article in Journal
Measuring Device for Air Speed in Macroporous Media and Its Application Inside Apple Storage Bins
Open AccessArticle

Evaluation of a Multichannel Non-Contact ECG System and Signal Quality Algorithms for Sleep Apnea Detection and Monitoring

1
KU Leuven, Deptartment of Electrical Engineering—ESAT, 3001 Leuven, Belgium
2
IMEC Belgium, 3001 Leuven, Belgium
*
Author to whom correspondence should be addressed.
Sensors 2018, 18(2), 577; https://doi.org/10.3390/s18020577
Received: 18 January 2018 / Revised: 9 February 2018 / Accepted: 11 February 2018 / Published: 13 February 2018
(This article belongs to the Section Physical Sensors)
Sleep-related conditions require high-cost and low-comfort diagnosis at the hospital during one night or longer. To overcome this situation, this work aims to evaluate an unobtrusive monitoring technique for sleep apnea. This paper presents, for the first time, the evaluation of contactless capacitively-coupled electrocardiography (ccECG) signals for the extraction of sleep apnea features, together with a comparison of different signal quality indicators. A multichannel ccECG system is used to collect signals from 15 subjects in a sleep environment from different positions. Reference quality labels were assigned for every 30-s segment. Quality indicators were calculated, and their signal classification performance was evaluated. Features for the detection of sleep apnea were extracted from capacitive and reference signals. Sleep apnea features related to heart rate and heart rate variability achieved high similarity to the reference values, with p-values of 0.94 and 0.98, which is in line with the more than 95% beat-matching obtained. Features related to signal morphology presented lower similarity with the reference, although signal similarity metrics of correlation and coherence were relatively high. Quality-based automatic classification of the signals had a maximum accuracy of 91%. Best-performing quality indicators were based on template correlation and beat-detection. Results suggest that using unobtrusive cardiac signals for the automatic detection of sleep apnea can achieve similar performance as contact signals, and indicates clinical value of ccECG. Moreover, signal segments can automatically be classified by the proposed quality metrics as a pre-processing step. Including contactless respiration signals is likely to improve the performance and provide a complete unobtrusive cardiorespiratory monitoring solution; this is a promising alternative that will allow the screening of more patients with higher comfort, for a longer time, and at a reduced cost. View Full-Text
Keywords: capacitive ECG; ECG quality indicator; non-contact ECG; sleep apnea; sleep monitoring; unobtrusive monitoring capacitive ECG; ECG quality indicator; non-contact ECG; sleep apnea; sleep monitoring; unobtrusive monitoring
Show Figures

Figure 1

MDPI and ACS Style

Castro, I.D.; Varon, C.; Torfs, T.; Van Huffel, S.; Puers, R.; Van Hoof, C. Evaluation of a Multichannel Non-Contact ECG System and Signal Quality Algorithms for Sleep Apnea Detection and Monitoring. Sensors 2018, 18, 577.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop