Abstract
An inertially stabilized platform (ISP) is generally equipped with a position and orientation system (POS) to isolate attitude disturbances and to focus surveying sensors on interesting targets. However, rotation of the ISP will result in a time-varying lever arm between the measuring center of the inertial measurement unit (IMU) and the phase center of the Global Positioning System (GPS) antenna, making it difficult to measure and provide compensation. To avoid the complexity of manual measurement and improve surveying efficiency, we propose an automatic estimation method for the dynamic lever arm. With the aid of the ISP encoder data, we decompose the variable lever arm into two constant lever arms to be estimated on line. With a complete 21-dimensional state Kalman filter, we accurately and simultaneously accomplish navigation and dynamic lever arm calibration. Our observability analysis provides a valuable insight into the conditions under which the lever arms can be estimated, and we use the error distribution method to reveal which error sources are the most influential. The simulation results demonstrate that the dynamic lever arm can be estimated to within [0.0104; 0.0110; 0.0178] m, an accuracy that is equivalent to the positioning accuracy of Carrier-phase Differential GPS (CDGPS).
1. Introduction
Airborne earth observation takes the aircraft as the platform, and it uses remote sensing load such as synthesize aperture radar (SAR) and charge coupled device (CCD) array camera to acquire a wide range, highly accurate and multilayered space-time information of global surface and deep earth [1]. A position and orientation system (POS) is a dedicated strapdown inertial navigation system (SINS)/Global Positioning System (GPS) integrated system for airborne remote sensing [2]. As a direct georeferencing (DG) system, the POS provides the ability to directly relate the data collected by a remote sensing system to earth without using traditional ground-based measurements [3]. To improve mapping accuracy and efficiency, the POS is required to provide the position information to centimeter-level accuracy, and orientation data to sub-arcminute accuracy in either real-time navigation or post-mission, such as the current state-of-the-art airborne system POS AV610 [3,4]. This is primarily accomplished by the inertial measurement unit (IMU) integrated with a Carrier-phase Differential GPS (CDGPS).
The key algorithm for POS is still SINS/GPS integrated navigation [5,6]. For the loosely-coupled integration method discussed here, the positions and velocities of the SINS and GPS solutions are compared, and the resulting differences are used as the measurement values for a Kalman filter [7,8]. Due to the extremely high positioning accuracy of a CDGPS, typically 1–2 cm plus 1 ppm of baseline separation in real-time kinematic (RTK) or post-processing [9,10], many overlooked errors must be treated seriously. Among these, the time and space asynchronies are the dominant error sources. The time asynchrony means the time delay of the GPS position and the velocity information with respect to the SINS data in real-time systems, which will badly influence the accuracy of the SINS/GPS navigation solution. Based on one pulse per second (1PPS) of the GPS, which can deliver very high time accuracies such as 20 ns, the time delay can be significantly attenuated by the professional time synchronization technology [11]. The space asynchrony means the lever arm between the GPS antenna and the IMU. Generally, the GPS antenna is mounted on the roof of the plane for better GPS satellite visibility [7,12], while the IMU is installed inside the plane cabin or under the aircraft belly as close to the surveying sensors as possible to weaken the influence of flexural deformation. Therefore, the phase center of the GPS antenna and the measuring center of the IMU are separated by a lever arm. Since the lever arm in length is usually several meters, it severely deteriorates measurement values under angular excitations if no compensation is provided.
Many efforts have been devoted to improving SINS/GPS integration accuracy by attenuating the lever arm uncertainty. One method is manual measurement by a total station [13,14], which can obtain the length of the lever arm with sufficient accuracy, but suffers from complicated operation. Furthermore, it is a difficult task in itself to determine the phase center of a GPS antenna and the sensing center of an IMU. Repeated measurements are inevitable if the GPS antenna or IMU is replaced or remounted. The other method is automatic identification of the lever arm by the SINS/GPS integration navigation [1,15,16,17,18,19,20], in which the lever arm is extended as an error state of the Kalman filter to be estimated, while the vehicle maneuvers. The latter method is simple and effective, but practical only if the lever arm is constant.
To maintain imaging quality, aerial surveying sensors are required to move in a straight line with a given direction, but a plane may deviate from the ideal motion trajectory, due to gusts, air turbulence, or flight control errors [7,21]. Consequently, an inertially stabilized platform (ISP) with three gimbals is usually used to isolate the angular motion interference and to focus the surveying sensor onto the desired targets, such as the general ISP PAV80 and GSM3000 [7,22,23]. The use of ISP makes the lever arm problem more complicated. Generally, the surveying sensor and the IMU are rigidly mounted close together on the ISP, but the measuring center of the IMU cannot be ensured to coincide with the rotating center of the ISP. When the ISP rotates, the lever arm between the IMU center and the GPS antenna center changes; for this reason, we call it a dynamic lever arm. Since the lever arm is not constant in this situation, traditional lever arm estimation methods do not work. In [7,12], the dynamic lever arm is decomposed into two constant lever arms to be compensated in flying missions, but they are still manually measured in advance. In order to avoid complex manual measurements and to improve surveying efficiency, we propose an automatic approach to estimating two separate lever arms that provide equivalent compensation.
The rest of this paper is organized as follows: Section 2 describes the system model and the problems to be solved. Section 3 presents the proposed integrated navigation approach and analyzes the corresponding observability in detail. Section 4 verifies our method through simulation tests, and conclusions are drawn in Section 5.
2. System Description
As shown in Figure 1, the IMU and surveying sensors are usually fixed on the inner gimbal of the ISP. Thus, the mounting angle and lever arm between the two are constant, reducing the accuracy requirements for the ISP. The GPS antenna is mounted on the roof of the plane for better satellite visibility. The related coordinate systems are defined as follows:
Figure 1.
The installation relationship of the position and orientation system (POS) and surveying system.
-frame, the navigation frame, chosen as the local level east–north–up (ENU) coordinate;
-frame, the IMU body frame, implicitly predefined by the calibrated sensitive axes of the inertial sensors, with the origin located at the sensitive center of IMU (point ), and axes pointing right, forward, and upward;
-frame, the carrier frame, fixed to the flight vehicle and originating at the rotating center of the ISP (point ). The axis directions of -frame do not rotate with the gimbals, and coincide with the ISP only if the encoder data of three gimbals are all zeros;
-frame, the surveying sensor frame, rigidly fixed to the surveying sensor with the origin located at the surveying center (point ).
Based on the established frames, the related lever arms are defined as follows:
, the lever arm from the rotating center of the ISP (point ) to the sensitive center of IMU (point ) projected in the -frame;
, the lever arm from the rotating center of the ISP (point ) to the phase center of the GPS antenna (point ) projected in the -frame. Whether the ISP rotates or not, there is no relative motion between the point and point in the -frame; thus, the lever arm is a constant;
, the lever arm from the sensitive center of the IMU (point ) to the phase center of the GPS antenna (point ) projected in the -frame;
, the lever arm from the sensitive center of the IMU (point ) to the measuring center of the surveying center (point ), projected in the -frame.
Three lever arms—, , and —are constant, while lever arm changes with the ISP rotation. Because the lever arm is uncertain and time-varying, it is referred to as a dynamic lever arm.
Since the attitude matrix can be obtained from the SINS solution, the transformation matrix from -frame to the -frame can be obtained as follows:
in which the direction cosine matrix is formed with the encoder data of the ISP [7]:
where:
the angles , , and are encoder data obtained from the inner, middle, and outer gimbals of the ISP, respectively.
Referring to Equation (2), the angular rate of the -frame with respect to the -frame, denoted as , can be calculated as follows [7]:
where , , and are the angular rates of roll, pitch, and heading gimbals of the ISP, respectively, which are obtained by the time differentiation of the corresponding encoder data.
According to the lever arm effect [24], if the position and velocity parameters at point are obtained from navigation solutions, and the lever arm is known, the corresponding information at point can be calculated as follows:
where and denote the position information consisting of latitude, longitude, altitude; and are the velocity data at point and point in the -frame; and are the local latitude and height; and denote the transverse and meridian radius of curvature. The relative angular rate is obtained by , in which can be acquired from the output of gyros, and denotes earth’s rotation rate vector in the -frame.
Similarly, the position and velocity parameter correlations among the point , point , and point are formulated as:
where and denote the velocities at point and point in the -frame, and the relative angular rate can be obtained by:
In a normal integrated navigation mechanism, the velocity and/or position differences between the SINS and GPS solutions are generally taken as the measurement values. To improve the measurement accuracy, the dynamic lever arm must be compensated precisely even if it is difficult. Based on Equations (7) and (8), the dynamic lever arm can be compensated as follows:
Combining Equations (9) and (11) yields:
This means that the dynamic lever arm can be decomposed into two constant lever arms and , because of the fact that the ISP rotating center is fixed to both the -frame and the -frame. From the geometric location relationship shown in Figure 1, we can deduce the same results as Equation (12). Therefore, if the two constant lever arms and are precisely measured in advance, the dynamic lever arm can be compensated as Equation (12). However, as mentioned before, manual measurement is complex, tedious, and inefficient. To avoid these drawbacks and enhance the efficiency of surveying, we propose a method to automatically estimate the lever arm and to accomplish the integrated navigation simultaneously.
4. Simulation Analysis
4.1. Simulation Conditions
Considering the extremely high accuracy requirements for a lever arm in POS, it is difficult to find another more accurate benchmark to evaluate the estimation results. As an expedient, we carried out a series of simulation tests instead of real tests to verify the proposed method. Considering the effect of the time-asynchrony error, we assume that the aircraft flies at 50 m/s uniform speed, and the angular motion excitations are added into the simulation trajectory. The initial values needed for the trajectory are given as:
- Initial position: latitude, longitude and altitude [34.2°; 108.9°; 400 m];
- Initial Velocity: = [0; 50; 0] m/s;
- Initial Attitude: pitch, roll and heading [0; 0; 0]°.
- Lever arms to be estimated: = [−0.3; 0.1; 0.2] m, = [0.5; −2.0; 2.0] m.
To verify the observability analysis results in Section 3.2, two simulation trajectories with different rotation sequences are designed as shown in Table 1. The total time of one simulation trajectory is 150 s, and the related rotation angular rates in two trajectories are all set to 10°/s.
Table 1.
The design of simulation trajectories.
As shown in Table 1, the only difference between the two trajectories is that steps 2 and 3 are exchanged, which means that the change of matrices and occur in a different time sequence. The rotation angles of ISP gimbals and vehicular attitudes are shown in Figure 2.
Figure 2.
The simulated angular motion trajectories and (a) Trajectory 1; (b) Trajectory 2.
Referring to the system POS AV610 produced by Applanix [4,35], we simulated an aviation-grade SINS and a CDGPS receiver with sensor specifications, including initial errors, process noises, and measurement noises listed in Table 2. Without loss of generality, the IMU data is sampled at 100 Hz, the ISP encoder data outputs at 20 Hz, and the GPS positioning information at 1 Hz.
Table 2.
Specifications of the sensors.
4.2. Simulation Results of Lever Arm Estimation
We use the reduced-order filter model with parameters set as in Appendix C to estimate the lever arms and position errors in two different trajectories. The simulation results of Trajectory 1 are illustrated in Figure 3, while the simulation results of Trajectory 2 are given in Figure 4.
Figure 3.
The simulation results of Trajectory 1 and (a) estimation errors of the lever arm ; (b) estimation errors of the lever arm ; (c) estimation errors of the combined dynamic lever arm ; (d) position errors of strapdown inertial navigation system (SINS)/Global Positioning System (GPS) integrated navigation.
Figure 4.
The simulation results of Trajectory 2 and (a) estimation errors of the lever arm ; (b) estimation errors of the lever arm ; (c) estimation errors of the combined dynamic lever arm ; (d) position errors of SINS/GPS integrated navigation.
Figure 3a shows the estimation errors of lever arm , Figure 3b,c illustrate the estimation errors of lever arm and dynamic lever arm , while Figure 3d gives the position errors of SINS/GPS integrated navigation. As shown in Figure 3a, the heading gimbal of ISP rotates by 90° at 30 s, and the and components of lever arm are estimated correctly. When the roll gimbal of the ISP rotates by 30° at 60 s, the remaining component is identified quickly. It can be seen that the rotations of ISP gimbals can distinguish the lever arm , but have no effect on lever arm . Therefore, there are still significant position errors in integrated navigation before 90 s as shown in Figure 3d. Once the vehicular attitude changes at 90 s and 120 s, the combined lever arm is estimated as in Figure 3c and the position errors converge immediately as shown in Figure 3d. Since the lever arm is identified, the constant lever arm is determined with the convergence of lever arm .
As shown in Figure 4c, the combined lever arm is identified when the vehicular heading turns at 30 s and the roll rotates at 60 s. Clearly, the change of attitude matrix is helpful to estimate the equivalent lever arm . Even though the constant lever arms and cannot be separated, it does not affect the positioning accuracy of SINS/GPS, as shown in Figure 4d. As the ISP gimbals begin to rotate at 90 s and 120 s, the lever arms and are further separated, as shown in Figure 4a,b.
To evaluate lever arm estimation accuracy and positioning accuracy, we carried out 100 Monte-Carlo simulations, 50 times for each trajectory. The final lever arm estimation results at the end of every test are shown in Figure 5, and Figure 6 shows the final positioning results. In these Figures, the terms “Trj1” is the abbreviation for Trajectory 1, “Trj2” is the abbreviation for Trajectory 2, and “RMS” are the envelopes of root mean square error statistics.
Figure 5.
The estimation results of dynamic lever arm .
Figure 6.
The positioning results of SINS/GPS navigation with lever arm automatic estimation.
.
As shown in Figure 5 and Figure 6, the final estimation accuracy for the equivalent dynamic lever arm is [0.0104; 0.0110; 0.0178] m (RMS), and the positioning accuracy is [0.0123; 0.0128; 0.0181] m (RMS), which is nearly the same as the positioning accuracy of CDGPS listed in Table 2.
In manual measurements, the lever arms can be measured with an accuracy of 1 mm level by a laser total station instrument [17], if the phase center of the GPS antenna, the sensing center of the IMU, and the rotating center of the ISP are all marked out without error. It is true that the automatic estimation method presented here cannot accomplish such accuracy, which is restricted by the accuracy of CDGPS. However, in many practical situations, it is difficult to accurately locate these three centers, especially for the IMU. As the sensitive centers of the three-axis accelerometers do not coincide, the IMU actually have a virtual sensing center determined by the calibration algorithm of the inner arms [36], and the calibration accuracy is greatly influenced by the accuracy of inertial sensors. If the sensing centers cannot be marked out physically, the accuracy of manual measuring cannot be guaranteed.
The purpose of the lever arm compensation is to obtain a higher positioning accuracy of SINS/GPS integration. Assuming that the lever arm has been manually measured with an accuracy of 1 mm, under the same simulation conditions, we obtain the positioning results of the SINS/GPS integration as shown in Figure 7.
Figure 7.
The positioning results of SINS/GPS navigation with lever arm manual measuring.
The positioning accuracy of Figure 7 is [0.0071; 0.0068; 0.0078] m (RMS), which is slightly higher than that of the automatic estimation method. Even so, compared with the state-of-art product, POS AV610 [4], which can accomplish typical positioning accuracy of 0.02 m (horizontal)/0.05 m (vertical) by post-processing, the accuracy of the proposed automatic estimation method is still acceptable. Thus, the automatic estimation method is an effective alternative approach for certain situations, in which the measuring conditions are not available or the dynamic lever arm cannot be measured accurately and efficiently.
4.3. Error Distribution Simulation Results
The error distribution simulation tests are devoted to determining which error sources primarily affect the estimation accuracies of specific parameters. For sake of simplicity, the associated error sources in full-order model are classified into eight categories, as shown in Table 3, with the same RMS values as Table 2. The noteworthy parameters are chosen as the norm of lever arm , with RMS error denoted as ; the norm of lever arm with RMS error denoted as ; and the norm of positioning error with RMS error denoted as . Under the Trajectory 1, the effects of each category on the estimation accuracies are illustrated in Figure 8.
Table 3.
Error classification.
Figure 8.
The error distribution budgets. (a) The estimation error of the norm of the lever arm ; (b) The estimation error of the norm of the lever arm ; (c) The estimation error of the norm of positioning errors.
As shown in Figure 8, the initial errors and process noises have little effect on the positioning and lever arm estimation accuracy, while the final positioning accuracy are mainly determined by the CDGPS error, consistent with the previous analysis. In addition, the time-asynchrony error and ISP encoder error have important influences on the final accuracy, and thus should be treated seriously. We note that the results of Figure 8 are based on input error values shown in Table 2. According to the linear error model, if the input errors expand n times, their effects will also increase n times.
5. Conclusions
The ISP equipped in a POS results in a variable lever arm, making it difficult to compensate. Instead of inefficient manual measurement strategies, our proposed method uses the encoder data from ISP gimbals to decompose the dynamic lever arm into two constant lever arms to be estimated automatically. Based on the established 21-dimensional state Kalman filter, our error analysis and simulation tests provide some meaningful conclusions. First, rotation of the ISP and an attitude change of the vehicle are necessary to determine the dynamic lever arm. Second, encoder errors of the ISP have a limited effect on estimation accuracy, so that general turntables can be accepted if the lever arm is small enough. Third, precise time compensation is necessitated in both the lever arm estimation method and the manual measuring method. Last, the estimation accuracy of the dynamic lever arm mainly depends on the positioning accuracy of the CDGPS. Therefore, the proposed method can be used as an effective substitute for manual measurement with acceptable accuracy.
Author Contributions
Conceptualization, Q.F.; Methodology, Q.F. and S.L.; Software Q.F. and Y.L.; Validation, Q.F., Y.L., Q.Z., and F.W.; Writing—Original Draft Preparation, Q.F.; Writing—Review & Editing, Q.F., S.L., Y.L., Q.Z., and F.W.; Supervision, S.L.; Funding Acquisition, Q.Z.
Funding
This research was funded by the Aeronautical Science Fund of China (20165853041).
Conflicts of Interest
The authors declare no conflict of interest.
Appendix A
In the real-world model, besides the attitude, velocity, position, and lever arm errors listed in (13), the measurement error models of the gyros and accelerometers are extended as follows:
where and are error transfer matrices of the gyros and accelerometers, in which the diagonal elements denote the scale factor errors, while the off-diagonal elements express the quadrature errors, respectively; and are the gyro and accelerometer biases; and denote the random walk noises of gyros and accelerometers.
In summary, the 39-dimensional state error vector in the real-world model is formed as follows:
where denotes the state vector in the real-world model, and represents the th column vector of matrix or .
In addition, the system driving noise of the real-world model includes the inertial sensor noises and , while the measurement noise contains the GPS positioning noise, the ISP encoder noise, and the time-asynchrony noise.
Appendix B
Based on the real world model, the state vector of the full-order filter is selected as:
where the superscript “*” denotes the matrix involved in full-order filter model.
The accompanying state equation of the full-order filter is designed as:
where:
Accordingly, the position measurement equation of the full-order design filter is:
in which:
where represents the positioning noise of the GPS; and are the position noises caused by encoder measuring error and time-asynchrony error, with the covariance as:
in which and are the mean square deviation of the encoder measurement noise and time-asynchrony noise.
Appendix C
Referring to Table 2, the initial state , initial covariance matrix , and system noise variance matrix needed by the state equation of the reduced-order filter are set as:
where denotes the state propagation cycle, set as 0.01 s and equal to the SINS solution cycle. The units given above are for easy interpretation, and should be changed to SI in practical application.
According to the specifications of CDGPS, the position measurement covariance matrix of the reduced-order filter is set as:
References
- Ma, Y.; Fang, J.; Cheng, J. The Model of Multi-level Lever-arm in Position and Orientation System. In Proceedings of the IEEE International Symposium on Instrumentation and Control Technology (ISICT), London, UK, 11–13 July 2012; Volume 8, pp. 183–188. [Google Scholar]
- Liu, Z.; Fang, J. Experimental Study of POS Lever-arm Error Compensation. In Proceedings of the IEEE International Symposium on Instrumentation and Control Technology (ISICT), London, UK, 11–13 July 2012; Volume 8, pp. 32–36. [Google Scholar]
- Mostafa, M.; Hutton, J.; Reid, B.; Hill, R. GPS/IMU Products—The Applanix Approach. In Proceedings of the Photogrammetric Week; Wichmann: Heidelberg, Germany, 2001; Available online: http://www.navmatica.com/wp-content/uploads/2014/02/M_Mostafa_ PHOWO_2001_s1.pdf (accessed on 30 June 2018).
- POS AV Datasheet. Applanix, A Trimble Company. Available online: https://www.applanix.com/downloads/products/specs/posav_datasheet.pdf (accessed on 30 June 2018).
- Kocaman, S. GPS and INS Integration with Kalman Filtering for Direct Georeferencing of Airborne Imagery; Geodetic Seminar Report; Institute of Geodesy and Photogrammetry: Zurich, Switzerland, 2003; Available online: http://www.imar.de/downloads/papers/gpsins_skocaman.pdf (accessed on 20 June 2018).
- Zhu, Z.; Li, C.; Zhou, X. An Accurate High-Order Errors Suppression and Cancellation Method for High-Precision Airborne POS. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5357–5367. [Google Scholar] [CrossRef]
- Cao, Q.; Zhong, M.; hao, Y. Dynamic Lever Arm Compensation of SINS/GPS Integrated System for Aerial Mapping. Measurement 2015, 60, 39–49. [Google Scholar] [CrossRef]
- Cui, X.; Mei, C.; Qin, Y.; Yan, G.; Liu, Z. In-motion Alignment for Low-cost SINS/GPS under Random Misalignment Angles. J. Navig. 2017, 70, 1–17. [Google Scholar] [CrossRef]
- Li, J.; Fang, J.; Lu, Z.; Bai, L. Airborne Position and Orientation System for Aerial Remote Sensing. Int. J. Aerosp. Eng. 2017, 9, 1–11. [Google Scholar] [CrossRef]
- Zhai, F.; Li, J.; Ye, W.; Gu, B.; Lu, Z.; Qiu, H. An Airborne Position and Orientation System (POS) for Remote Sensing and Its Current State. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 18–20 October 2017; pp. 1–6. [Google Scholar]
- Ding, W.; Wang, J.; Li, Y.; Peter, M.; Chris, R. Time Synchronization Error and Calibration in Integrated GPS/INS Systems. ETRI J. 2008, 30, 59–67. [Google Scholar] [CrossRef]
- Zhong, M.; Cao, Q.; Guo, J.; Zhou, D. Simultaneous Lever-Arm Compensation and Disturbance Attenuation of POS for a UAV Surveying System. IEEE Trans. Instrum. Meas. 2016, 65, 2828–2839. [Google Scholar] [CrossRef]
- Hide, C.; Moore, T. GPS and Low Cost INS Integration for Positioning in the Urban Environment. In Proceedings of the International Technical Meeting of the Satellite Division of the Institute of Navigation, Long Beach, CA, USA, 13–16 September 2005. [Google Scholar]
- Chris, H.; Terry, M.; Chris, H.; David, P. Low Cost High Accuracy Positioning In Urban Environments. J. Navig. 2006, 59, 365–379. [Google Scholar]
- Hong, S.; Man, H.L.; Chun, H.H.; Kwon, S.H.; Speyer, J.L. Experimental Study on the Estimation of Lever Arm in GPS/INS. IEEE Trans. Veh. Technol. 2006, 55, 431–448. [Google Scholar] [CrossRef]
- Xiong, Z.; Peng, H.; Wang, J.; Wang, R.; Liu, J. Dynamic Calibration Method for SINS Lever-arm Effect for HCVs. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 2760–2771. [Google Scholar] [CrossRef]
- Ma, Y.; Fang, J.; Li, J. Accurate estimation of lever arm in SINS/GPS integration by smoothing methods. Measurement 2014, 48, 119–127. [Google Scholar] [CrossRef]
- Grejner-Brzezinska, D.A. Direct Sensor Orientation in Airborne and Land-Based Mapping Applications; Report No. 461; Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State University: Columbus, OH, USA, 2001. [Google Scholar]
- Toth, C. Experiences with Frame CCD Arrays and Direct Georeferencing. In Proceedings of the Photogrammetric Week; Wichmann: Heidelberg, Germany, 1999; pp. 95–109. [Google Scholar]
- Ip, A.W.L.; El-Sheimy, N.; Mostafa, M.M.R. System Performance Analysis of INS/DGPS Integrated System for Mobile Mapping System (MMS). In Proceedings of the 4th International Symposium on Mobile Mapping Technology, Kunming, China, 28–31 April 2004. [Google Scholar]
- Lu, Z.; Fang, J.; Gong, X.; Li, J.; Wang, S.; Wang, Y. Dynamic Lever Arm Error Compensation of POS Used for Airborne Earth Observation. Int. J. Aerosp. Eng. 2018, 2, 1–13. [Google Scholar] [CrossRef]
- Leica PAV80 Gyro-Stabilized Sensor Mount; Leica Geosystems AG: Heerbrugg, Switzerland, 2012; Available online: https://w3.leica-geosystems.com/downloads123/zz/airborne/PAV80/Flyer/Leica_PAV80_Flyer_en. pdf (accessed on 10 November 2018).
- GSM 3000 Specifications; SOMAG AG: Jena, Germany, 2016; Available online: https://www.somag-ag.de/fileadmin/user_upload/GSM_3000/Dokumente/111600_906_08_ 04_GSM_3000__Specifications.pdf (accessed on 10 November 2018).
- Seo, J.; Lee, J.G.; Park, C.G. Lever Arm Compensation for Integrated Navigation System of Land Vehicles. In Proceedings of the 2005 IEEE Conference on Control Applications, Toronto, ON, Canada, 28–31 August 2005; pp. 523–528. [Google Scholar]
- Liu, Y.; Li, S.; Fu, Q.; Liu, Z. Impact Assessment of GNSS Spoofing Attacks on INS/GNSS Integrated Navigation System. Sensors 2018, 18, 1433. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Liu, Y.; Liu, Z.; Li, S.; Guan, B. Autonomous In-motion Alignment for Land Vehicle Strapdown Inertial Navigation System without the Aid of External Sensors. J. Navig. 2018, 71, 1312–1328. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, M.; Hu, X.; Hu, D. Self-calibration for Land Navigation using Inertial Sensors and Odometer: Observability analysis. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Chicago, IL, USA, 10–13 August 2009; pp. 1–10. [Google Scholar]
- Diao, Y.; Li, M.; Zhang, X.; Wang, X. Satellite Disciplined Crystal Oscillator System Based on Kalman Filter and PI Algorithm. In Proceedings of the 2014 IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014; pp. 624–628. [Google Scholar]
- Yan, G.; Sun, X.; Weng, J.; Zhou, Q.; Qin, Y. Time-asynchrony Identification Between Inertial Sensors in SIMU. J. Syst. Eng. Electron. 2015, 26, 346–352. [Google Scholar] [CrossRef]
- Weng, J.; Qin, Y.; Yan, G.; Mei, C. Analysis Method on Error Distributions of in-Flight Alignment Schemes. J. Chin. Inert. Technol. 2015, 23, 570–574. [Google Scholar]
- Savage, P.G. Strapdown Analytics; Strapdown Associates: Maple Plain, MN, USA, 2000. [Google Scholar]
- Farrell, J. Aided Navigation: GPS with High Rate Sensors; Electronic Engineering; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Medan, Y.; Baritzhack, I.Y. Error and Sensitivity Analysis Scheme of a New Data Compression Technique in Estimation. J. Guid. Control Dyn. 1981, 4, 510–517. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, H.; Wang, S. Principles of Kalman Filter and Integrated Navigation; Northwestern Polytechnical University Press: Xi’an, China, 2015. [Google Scholar]
- Scherzinger, B.; Hutton, J. Applanix IN-Fusion Technology Explained; Applanix Corporation. Available online: https://www.applanix.com/pdf/ Applanix_IN-Fusion.pdf (accessed on 16 June 2018).
- Yan, G.; Zhou, Q.; Weng, J.; Qin, Y. Inner Lever Arm Compensation and Its Test Verification for SINS. J. Astronaut. 2012, 33, 62–67. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).