Employing RayTracing and LeastSquares Support Vector Machines for Localisation^{ †}
Abstract
:1. Introduction
2. Experimental Setup and Methodology
2.1. Ray Tracing
2.2. Assumptions
 Channel reciprocity
 Network deployment and capability
 Noise
2.3. Localisation Algorithms Used for Comparison
2.4. Data PreProcessing
2.5. LeastSquare Support Vector Machines
2.6. Direct LSSVM Localisation Method
2.6.1. Training and Estimation
2.6.2. PostProcessing and Outlier Removal
2.7. Localisation Performance
2.8. Environments Considered
2.9. Performance Comparisons
3. Results
3.1. Results for the Direct Method
3.2. Comparison with TOA/AOA
3.3. Comparison with TDOA
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
 GSA. Available online: https://www.gsa.europa.eu/newsroom/news/resultsaregalileoincreasesaccuracylocationbasedservices (accessed on 11 November 2018).
 Chitambira, B.; Armour, S.; Wales, S.; Beach, M. NLOS Identification and Mitigation for Geolocation Using Leastsquares Support Vector Machines. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (IEEE WCNC 2017), San Francisco, CA, USA, 19–22 March 2017. [Google Scholar]
 Chitambira, B.; Armour, S.; Wales, S.; Beach, M. Direct Localisation Using Raytracing and LeastSquares Support Vector Machines. In Proceedings of the 2018 8th International Conference on Localization and GNSS (ICLGNSS), Guimaraes, Portugal, 26–28 June 2018. [Google Scholar] [CrossRef]
 Khodjaev, J.; Park, Y.; SaeedMalik, A. Survey of NLOS identification and error mitigation problems in UWBbased positioning algorithms for dense environments. Ann. Telecommun. J. 2010, 65, 301–311. [Google Scholar] [CrossRef]
 Wang, Y.; Li, H.; Luo, X.; Sun, Q.; Liu, J. A 3D Fingerprinting Positioning Method Based on Cellular Networks. Int. J. Distrib. Sens. Netw. 2014, 10, 248981. [Google Scholar] [CrossRef]
 De Sousa, M.N.; Thomä, R.S. Mobile Station Localization Emitter in Urban NLoS using Multipath Ray Tracing Fingerprints and Machine Learning. In Proceedings of the 2018 8th International Conference on Localization and GNSS (ICLGNSS), Guimaraes, Portugal, 26–28 June 2018. [Google Scholar] [CrossRef]
 Schmitz, J.; Schröder, F.; Mathar, R. TDOA fingerprinting for localization in nonlineofsight and multipath environments. In Proceedings of the 2015 International Symposium on Antennas and Propagation (ISAP), Hobart, Australia, 9–12 November 2015. [Google Scholar]
 Kikuchi, S.; Sano, A.; Tsuji, H. Blind Mobile Positioning in Urban Environment Based on RayTracing Analysis. EURASIP J. Appl. Signal. Process. 2006, 2006, 154. [Google Scholar] [CrossRef]
 Ng, K.H.; Tameh, E.K.; Doufexi, A.; Hunukumbure, M.; Nix, A.R. Efficient multielement Ray Tracing with sitespecific comparisons using measured MIMO channel data. IEEE Trans. Veh. Technol. 2007, 56, 1019–1032. [Google Scholar] [CrossRef] [Green Version]
 Tameh, E.K.; Nix, A.R. The use of measurement data to analyse the performance of rooftop diffraction and foliage loss algorithms in a 3D integrated urban/rural propagation model. In Proceedings of the Vehicular Technology Conference Spring 1998, Ottawa, ON, Canada, 21 May 1998; pp. 303–307. [Google Scholar]
 Thomas, T.A.; Vook, F.W.; Mellios, E.; Hilton, G.S.; Nix, A.R.; Visotsky, E. 3D extension of the 3GPP/ITU channel model. In Proceedings of the 77th IEEE Vehicular Technologies Conference (VTCSpring), Dresden, Germany, 2–5 June 2013. [Google Scholar]
 Harris, P.; Hassan, W.B.; Brice, H.; Chitambira, B.; Beach, M.A.; Mellios, E.; Nix, A.R.; Armour, S.; Doufexi, A. An Overview of Massive MIMO Research at the University of Bristol. In Proceedings of the Radio Propagation and Technologies for 5G (2016), Durham, UK, 3 October 2016. [Google Scholar]
 Dardari, D.; Chong, C.C.; Win, M.Z. Improved lower bounds on TimeofArrival estimation error in realistic UWB Channels. In Proceedings of the 2006 IEEE International Conference on UltraWideBand, Waltham, MA, USA, 24–27 September 2006; pp. 531–537. [Google Scholar] [CrossRef]
 Landron, O.; Feuerstein, M.J.; Rappaport, T.S. A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment. IEEE Trans. Antennas. Propagat. 1996, 44, 341–351. [Google Scholar] [CrossRef]
 Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
 Marano, S.; Gifford, W.M.; Wymeersch, H.; Win, M.Z. NLOS identification and mitigation for localization based on UWB experimental data. IEEE J. Sel. Area. Commun. 2010, 28, 1026–1035. [Google Scholar] [CrossRef] [Green Version]
 van Gestel, T.; Suykens, J.A.; Baesens, B.; Viaene, S.; Vanthienen, J.; Dedene, G.; de Moor, B.; Vandewalle, J. Benchmarking Least Squares Support Vector Machine Classifiers. Mach. Learn. 2004, 54, 5–32. [Google Scholar] [CrossRef] [Green Version]
 Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
RayTracer Output Data 


© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chitambira, B.; Armour, S.; Wales, S.; Beach, M. Employing RayTracing and LeastSquares Support Vector Machines for Localisation. Sensors 2018, 18, 4059. https://doi.org/10.3390/s18114059
Chitambira B, Armour S, Wales S, Beach M. Employing RayTracing and LeastSquares Support Vector Machines for Localisation. Sensors. 2018; 18(11):4059. https://doi.org/10.3390/s18114059
Chicago/Turabian StyleChitambira, Benny, Simon Armour, Stephen Wales, and Mark Beach. 2018. "Employing RayTracing and LeastSquares Support Vector Machines for Localisation" Sensors 18, no. 11: 4059. https://doi.org/10.3390/s18114059