Packaged Droplet Microresonator for Thermal Sensing with High Sensitivity
Abstract
1. Introduction
2. Theoretical Analysis
3. Experimental Setups
4. Measurement and Analysis
4.1. Lasing Characteristics and Stability Analysis in Packaged MBR
4.2. Packaged Quasi-Droplet MBR
4.3. Packaged Droplet WGM Resonator
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vahala, K.J. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Slusher, R.E. Optical processes in microcavities. Phys. Today 1993, 46, 66–73. [Google Scholar] [CrossRef]
- He, L.; Ouml, Ş.K.; Yang, L. Whispering gallery microcavity lasers. Laser Photonics Rev. 2013, 7, 60–82. [Google Scholar] [CrossRef]
- Lee, W.; Sun, Y.; Li, H.; Reddy, K.; Sumetsky, M.; Fan, X. A quasi-droplet optofluidic ring resonator laser using a micro-bubble. Appl. Phys. Lett. 2011, 99, 091002. [Google Scholar] [CrossRef]
- Spillane, S.M.; Kippenberg, T.J.; Vahala, K.J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 2002, 415, 621–623. [Google Scholar] [CrossRef] [PubMed]
- Cohoon, G.A.; Kieu, K.; Norwood, R.A. Observation of two-photon fluorescence for Rhodamine 6G in microbubble resonators. Opt. Lett. 2014, 39, 3098–3101. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, P.; Steier, W.H. Tunable polymer double micro-ring filters. Photonics Tech. Lett. IEEE 2003, 15, 1255–1257. [Google Scholar] [CrossRef]
- Xiao, S.; Khan, M.H.; Shen, H.; Qi, M. A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion. Opt. Express 2007, 15, 14765–14771. [Google Scholar] [CrossRef] [PubMed]
- Armani, A.M.; Kulkarni, R.P.; Fraser, S.E.; Flagan, R.C.; Vahala, K.J. Label-free, single-molecule detection with optical microcavities. Science 2007, 317, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, F.; Arnold, S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Methods 2008, 5, 591–596. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ozdemir, S.K.; Zhu, J.; Kim, W.; Yang, L. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 2011, 6, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Santiagocordoba, M.A.; Boriskina, S.V.; Vollmer, F.; Demirel, M.C. Nanoparticle-based protein detection by optical shift of a resonant microcavity. Appl. Phys. Lett. 2011, 99, 073701. [Google Scholar] [CrossRef]
- Ward, J.; Benson, O. WGM microresonators: Sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev. 2011, 5, 553–570. [Google Scholar] [CrossRef]
- Liu, Y.; Davanço, M.; Aksyuk, V.; Srinivasan, K. Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators. Phys. Rev. Lett 2013, 110, 223603–223607. [Google Scholar] [CrossRef] [PubMed]
- Watkins, A.; Ward, J.; Wu, Y.; Chormaic, S.N. Single-input spherical microbubble resonator. Opt. Lett. 2011, 36, 2113–2115. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2015, 6, 47–73. [Google Scholar] [CrossRef]
- Zhang, C.L.; Gong, Y.; Zou, W.L.; Wu, Y.; Rao, Y.J.; Peng, G.D.; Fan, X. Microbubble-Based Fiber Optofluidic Interferometer for Sensing. J. Lightwave Technol. 2017, 35, 2514–2519. [Google Scholar] [CrossRef]
- Ta, V.D.; Chen, R.; Ma, L.; Ying, Y.J.; Sun, H.D. Whispering gallery mode microlasers and refractive index sensing based on single polymer fiber. Laser Photonics Rev. 2013, 7, 133–139. [Google Scholar]
- Ashkin, A.; Dziedzic, J.M. Observation of Resonances in the Radiation Pressure on Dielectric Spheres. Phys. Rev. Lett. 1977, 38, 1351–1354. [Google Scholar] [CrossRef]
- Lin, H.; Eversole, J.D.; Campillo, A.J. Spectral properties of lasing microdroplets. J. Opt. Soc. Am. B 1992, 9, 43–50. [Google Scholar] [CrossRef]
- Avino, S.; Krause, A.; Zullo, R.; Giorgini, A.; Malara, P.; De Natale, P.; Loock, H.P.; Gagliardi, G. Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators. Adv. Opt. Mater. 2015, 2, 1155–1159. [Google Scholar] [CrossRef]
- Jonáš, A.; Kiraz, A.; Mestre, M.; Karadag, Y. Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides. J. Opt. Soc. Am. B 2012, 29, 3240–3247. [Google Scholar] [CrossRef]
- Labrador-Páez, L.; Soler-Carracedo, K.; Hernández-Rodríguez, M.; Martín, I.R.; Carmon, T.; Martin, L.L. Liquid whispering-gallery-mode resonator as a humidity sensor. Opt. Express 2017, 25, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, L.; Zhu, Z.; Zhang, Y.; Wei, Y.; Zhang, X.; Zhao, E.; Zhang, Y.; Yang, J.; Yuan, L. Whispering gallery mode temperature sensor of liquid microresonastor. Opt. Lett. 2016, 41, 4649–4652. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Shi, B.; Wang, Y.; Cui, L.; Yang, J.; Sun, W.; Li, H. Whispering gallery modes in a liquid-filled hollow glass microsphere. Opt. Lett. 2017, 42, 4659–4662. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Zhao, L.; Liu, Y.; Liu, S.; Yang, J. Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets. Appl. Phys. Lett. 2016, 109, 231906. [Google Scholar] [CrossRef]
- Vahala, K.J.; Hosseinzadeh, M. Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium. Opt. Express 2006, 14, 10800–10810. [Google Scholar]
- Wang, Y.; Li, H.; Zhao, L.; Liu, Y.; Liu, S.; Yang, J. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application. Opt. Express 2017, 25, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Balram, A.; Meng, D.D.; Sun, Y. Optofluidic Lasers with Monolayer Gain at the Liquid–Liquid Interface. ACS Photonics 2017, 4, 621–625. [Google Scholar] [CrossRef]
- Yang, Y.; Ward, J.; Chormaic, S.N. Quasi-droplet Microbubbles for High Resolution Sensing Applications. Opt. Express 2014, 22, 6881–6898. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.M.; Yang, Y.; Lei, F.; Yu, X.-C.; Xiao, Y.-F.; Chormaic, S.N. Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity. Optica 2018, 5, 674–677. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles. Opt. Laser Technol. 1998, 31, 328. [Google Scholar]
- Sun, Y.; Fan, X. Analysis of ring resonators for chemical vapor sensor development. Opt. Express 2008, 16, 10254–10268. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S.G.; Burnett, J.H. Optical properties of fluids for 248 and 193 nm immersion photolithography. Appl. Opt. 2006, 45, 1721–1724. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Xiao, Y.F.; Zhu, J.; Ozdemir, S.K.; Yang, L. Oscillatory thermal dynamics in high-Q PDMS-coated silica toroidal microresonators. Opt. Express 2009, 17, 9571–9581. [Google Scholar] [CrossRef] [PubMed]
- Teraoka, I.; Arnold, S. Coupled whispering gallery modes in a multilayer-coated microsphere. Opt. Lett. 2007, 32, 1147–1149. [Google Scholar] [CrossRef] [PubMed]
- White, I.M.; Gohring, J.; Sun, Y.; Yang, G.; Lacey, S.; Fan, X. Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators. Appl. Phys. Lett. 2007, 91, 241104. [Google Scholar] [CrossRef] [PubMed]
- Martín, L.L.; Pérezrodríguez, C.; Harogonzález, P.; Martín, I.R. Whispering gallery modes in a glass microsphere as a function of temperature. Opt. Express 2011, 19, 25792–25798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cocking, A.; Freeman, E.; Liu, Z.; Tadigadapa, S. Whispering gallery mode based on-chip glass microbubble resonator for thermal sensing. In Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems, Kaohsiung, Taiwan, 18–22 June 2017; pp. 630–633. [Google Scholar]
- Li, M.; Wu, X.; Liu, L.; Xu, L. Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators. Opt. Express 2013, 21, 16908–16913. [Google Scholar] [CrossRef] [PubMed]
- François, A.; Riesen, N.; Gardner, K.; Monro, T.M.; Meldrum, A. Lasing of whispering gallery modes in optofluidic microcapillaries. Opt. Express 2016, 24, 12466–12477. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, T.; Riesen, N.; Meldrum, A.; Fan, X.; Hall, J.M.M.; Monro, T.M.; François, A. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev. 2017, 11, 1600265. [Google Scholar] [CrossRef]
- Ward, J.M.; Yang, Y.; Chormaic, S.N. Highly Sensitive Temperature Measurements with Liquid-Core Microbubble Resonators. IEEE Photonics Technol. Lett. 2013, 25, 2350–2353. [Google Scholar] [CrossRef]
- Yu, J.; Lewis, E.; Brambilla, G.; Wang, P. Temperature Sensing Performance of Microsphere Resonators. Sensors 2018, 18, 2515. [Google Scholar] [CrossRef] [PubMed]
- Nawrocka, M.S.; Liu, T.; Wang, X.; Panepucci, R.R. Tunable silicon microring resonator with wide free spectral range. Appl. Phys. Lett. 2006, 89, 071110. [Google Scholar] [CrossRef]
- Özel, B.; Nett, R.; Weigel, T.; Schweiger, G.; Ostendorf, A. Temperature sensing by using whispering gallery modes with hollow core fibers. Meas. Sci. Technol. 2010, 21, 094015. [Google Scholar] [CrossRef]
- Jordan, A.M.; Viswanath, V.; Kim, S.E.; Pokorski, J.K.; Korley, L.S.T.J. Processing and surface modification of polymer nanofibers for biological scaffolds: A review. J. Mater. Chem. B 2016, 4, 5958–5974. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Fu, L.; Lu, Q.; Wu, X.; Xie, S. Packaged Droplet Microresonator for Thermal Sensing with High Sensitivity. Sensors 2018, 18, 3881. https://doi.org/10.3390/s18113881
Chen X, Fu L, Lu Q, Wu X, Xie S. Packaged Droplet Microresonator for Thermal Sensing with High Sensitivity. Sensors. 2018; 18(11):3881. https://doi.org/10.3390/s18113881
Chicago/Turabian StyleChen, Xiaogang, Liang Fu, Qijing Lu, Xiang Wu, and Shusen Xie. 2018. "Packaged Droplet Microresonator for Thermal Sensing with High Sensitivity" Sensors 18, no. 11: 3881. https://doi.org/10.3390/s18113881
APA StyleChen, X., Fu, L., Lu, Q., Wu, X., & Xie, S. (2018). Packaged Droplet Microresonator for Thermal Sensing with High Sensitivity. Sensors, 18(11), 3881. https://doi.org/10.3390/s18113881