Deep CNNs with Robust LBP Guiding Pooling for Face Recognition
Abstract
:1. Introduction
2. Proposed Method
- Convolutional Feature Maps are the outputs of the first convolutional layer of the network.
- RLBP Feature Maps are the robust LBP coding results of the convolutional feature maps.
- RLBP Weight Maps are the weights of each pixel in the sliding window according to the RLBP feature maps.
2.1. Robust LBP
2.1.1. Case 1: Only One Pattern Belongs to the Uniform Patterns
2.1.2. Case 2: More Than One Patterns Belong to the Uniform Patterns
2.1.3. Case 3: None Pattern Belongs to the Uniform Patterns
- Calculating all the uncertain RLBP values of the central pixel according to Equation (2).
- If == None and , then calculate the probabilities of all non-uniform patterns in according to Equation (7). Otherwise, calculate the probabilities of all uniform patterns in .
- Finally, the pattern with the max probability is regarded as the RLBP value of the central pixel.
2.2. RLBP Weight Maps
- Case 1: If the center pixel of the sliding window is encoded as only one uniform pattern according to Equation (2), the corresponding RLBP weight of the center pixel is defined as 1.
- Case 2: If the center pixel of the sliding window is encoded as more than one uniform patterns, then the probabilities of each uncertain RLBP in the are calculated, and the max probability is taken as the RLBP weight corresponding to the central pixel.
- Case 3: If all the uncertain RLBP patterns belong to the non-uniform, the RLBP weight of this central pixel is set to be 0.
3. Experimental Analysis
3.1. Baseline Network Architectures
3.1.1. The Discussion of
3.2. Experiments on the ORL Database
3.3. Experiments on the AR Database
3.4. Experiments Based on the GoogleNet
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 1701–1708. [Google Scholar]
- Huang, G.B.; Mattar, M.; Berg, T.; Learned-Miller, E. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. In Proceedings of the Faces in ’Real-Life’ Images: Detection, Alignment, and Recognition, Marseille, France, 12–18 October 2008. [Google Scholar]
- Sun, Y.; Wang, X.G.; Tang, X.O. Deep Learning Face Representation by Joint Identification-Verification. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 1988–1996. [Google Scholar]
- Sun, Y.; Wang, X.G.; Tang, X.O. Deeply learned face representations are sparse, selective, and robust. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2892–2900. [Google Scholar]
- Sun, Y.; Liang, D.; Wang, X.G.; Tang, X.O. DeepID3: Face Recognition with Very Deep Neural Networks. arXiv, 2015; arXiv:1502.00873. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014; arXiv:1409.1556. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 580–587. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Pinheiro, P.O.; Collobert, R.; Dollár, P. Learning to segment object candidates. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 11–12 December 2015; pp. 1990–1998. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the The IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015; pp. 1–9. [Google Scholar]
- Gong, Y.C.; Wang, L.W.; Guo, R.; Lazebnik, S. Multi-scale Orderless Pooling of Deep Convolutional Activation Features. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 392–407. [Google Scholar]
- Ren, S.Q.; He, K.M.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 11–12 December 2015; pp. 91–99. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December 2015; pp. 1440–1448. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 818–833. [Google Scholar]
- Yi, D.; Lei, Z.; Liao, S.; Li, S.Z. Learning Face Representation from Scratch. arXiv, 2014; arXiv:1411.7923. [Google Scholar]
- Boureau, Y.L.; Ponce, J.; Lecun, Y. A Theoretical Analysis of Feature Pooling in Visual Recognition. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 111–118. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015; pp. 886–893. [Google Scholar]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Dantcheva, A.; Ross, A. An ensemble of patch-based subspaces for makeup-robust face recognition. Inf. Fusion 2016, 32, 80–92. [Google Scholar] [CrossRef]
- Chen, C.J.; Ross, A. Local gradient Gabor pattern (LGGP) with applications in face recognition, cross-spectral matching, and soft biometrics. In Proceedings of the SPIE Defense, Security, and Sensing, Baltimore, MD, USA, 29 April–3 May 2013. [Google Scholar]
- Ahonen, T.; Hadid, A.; Pietikainen, M. Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 2037–2041. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.H.; Zhang, L.; Zhang, D. Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 2010, 43, 706–719. [Google Scholar] [CrossRef]
- Ren, J.F.; Jiang, X.D.; Yuan, J.S. LBP Encoding Schemes Jointly Utilizing the Information of Current Bit and Other LBP Bits. IEEE Signal Process. Lett. 2015, 22, 2373–2377. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef] [Green Version]
- Pietikäinen, M.; Hadid, A.; Zhao, G.; Ahonen, T. Computer Vision Using Local Binary Patterns; Springer: London, UK, 2011. [Google Scholar]
- Samaria, F.S.; Harter, A.C. Parameterisation of a stochastic model for human face identification. In Proceedings of the IEEE Workshop on Applications of Computer Vision, Sarasota, FL, USA, 5–7 December 1994; pp. 138–142. [Google Scholar] [Green Version]
- Jia, Y.Q.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional Architecture for Fast Feature Embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678. [Google Scholar]
- Martinez, A.M. The AR Face Database. CVC Tech. Rep. 24. 1998. Available online: www.cat.uab.cat/Public/Publications/1998/MaB1998/CVCReport24.pdf (accessed on 10 November 2018).
- Dabov, K.; Foi, A.; Katkovnik, K.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.C.; Zhu, M.; Liu, H.; Liu, Y. Visual Saliency Detection via Sparsity Pursuit. IEEE Signal Process. Lett. 2010, 17, 739–742. [Google Scholar] [CrossRef]
Alexnet | 81.16 | 73.48 | 64.13 | 46.72 |
ZF-5net | 81.24 | 75.62 | 67.50 | 49.07 |
Model | Alexnet | ZF-5net | ||
---|---|---|---|---|
Filter Size/Stride | Output Size | Filter Size/Stride | Output Size | |
Conv1 | ||||
Pool1 | ||||
Conv2 | ||||
Pool2 | ||||
Conv3 | ||||
Conv4 | ||||
Conv5 | ||||
Pool5 | ||||
Fc5 | - | 4096 | - | 4096 |
Fc6 | - | 4096 | - | 4096 |
Fc7 | - | 100 | - | 100 |
Alexnet+ Max | Alexnet+ Data Aug. | Alexnet+ G-RLBP | ZF-5net+ Max | ZF-5net+ Data Aug. | ZF-5net+ G-RLBP | ||
---|---|---|---|---|---|---|---|
Chi Square | 85.38 | 85.67 | 86.42 | 84.12 | 85.88 | 87.68 | |
Euclidean | 83.06 | 83.87 | 85.25 | 80.00 | 81.64 | 83.69 | |
Cosine | 89.44 | 90.12 | 92.74 | 85.33 | 86.56 | 87.72 | |
Chi Square | 65.15 | 76.43 | 80.55 | 69.44 | 77.75 | 81.42 | |
Euclidean | 61.32 | 80.32 | 85.34 | 66.11 | 78.47 | 82.25 | |
Cosine | 60.56 | 78.54 | 82.51 | 68.06 | 79.21 | 83.50 | |
Chi Square | 47.22 | 58.84 | 72.47 | 52.48 | 60.22 | 75.48 | |
Euclidean | 36.94 | 55.32 | 69.15 | 48.62 | 56.65 | 72.45 | |
Cosine | 48.89 | 56.76 | 70.54 | 53.87 | 57.80 | 73.66 | |
Chi Square | 23.61 | 26.22 | 54.53 | 38.89 | 40.34 | 59.41 | |
Euclidean | 15.83 | 20.11 | 49.87 | 29.44 | 32.90 | 51.03 | |
Cosine | 20.87 | 23.87 | 52.32 | 36.72 | 36.45 | 57.15 |
Alexnet+ Max | Alexnet+ Data Aug. | Alexnet+ G-RLBP | ZF-5net+ Max | ZF-5net+ Data Aug. | ZF-5net+ G-RLBP | ||
---|---|---|---|---|---|---|---|
Chi Square | 85.38 | 85.77 | 86.42 | 84.12 | 85.53 | 87.68 | |
Euclidean | 83.06 | 84.46 | 85.25 | 80.00 | 81.24 | 83.69 | |
Cosine | 89.44 | 91.20 | 92.74 | 85.33 | 86.43 | 87.72 | |
Chi Square | 37.78 | 59.72 | 65.65 | 45.78 | 60.21 | 68.55 | |
Euclidean | 35.62 | 56.44 | 62.85 | 41.11 | 57.97 | 63.32 | |
Cosine | 35.98 | 57.83 | 64.72 | 45.78 | 59.44 | 64.58 | |
Chi Square | 24.56 | 34.21 | 42.15 | 30.44 | 37.83 | 48.87 | |
Euclidean | 19.86 | 27.84 | 39.42 | 23.55 | 30.22 | 42.84 | |
Cosine | 21.67 | 30.76 | 45.57 | 28.56 | 35.17 | 42.05 | |
Chi Square | 19.05 | 22.13 | 32.12 | 24.72 | 26.43 | 33.65 | |
Euclidean | 15.72 | 18.04 | 25.96 | 18.85 | 21.36 | 24.17 | |
Cosine | 17.39 | 20.42 | 29.98 | 20.24 | 18.12 | 21.10 |
Alexnet+ Max | Alexnet+ Data Aug. | Alexnet+ GRLBP | ZF-5net+ Max | ZF-5net+ Data Aug. | ZF-5net+ GRLBP | |
---|---|---|---|---|---|---|
training (h) | 26 | 50 | 32 | 31 | 63 | 40 |
classification per image (ms) | 26.983 | 27.021 | 30.478 | 27.225 | 27.219 | 30.694 |
Alexnet+ Max | Alexnet+ Data Aug. | Alexnet+ G-RLBP | ZF-5net+ Max | ZF-5net+ Data Aug. | ZF-5net+ G-RLBP | ||
---|---|---|---|---|---|---|---|
Chi Square | 67.97 | 66.74 | 65.85 | 66.41 | 67.56 | 68.52 | |
Euclidean | 65.77 | 66.12 | 67.84 | 68.02 | 68.27 | 69.88 | |
Cosine | 64.92 | 65.96 | 69.44 | 70.38 | 71.23 | 72.52 | |
Chi Square | 34.42 | 42.72 | 53.86 | 39.69 | 45.51 | 57.74 | |
Euclidean | 30.54 | 40.11 | 50.65 | 36.87 | 42.28 | 52.42 | |
Cosine | 31.17 | 41.54 | 51.23 | 40.59 | 46.73 | 55.45 | |
Chi Square | 22.87 | 28.41 | 44.12 | 26.72 | 30.07 | 47.41 | |
Euclidean | 19.43 | 26.76 | 42.25 | 22.54 | 28.11 | 42.75 | |
Cosine | 24.51 | 28.83 | 46.36 | 25.06 | 27.43 | 45.25 | |
Chi Square | 10.02 | 16.12 | 30.22 | 12.26 | 17.34 | 33.12 | |
Euclidean | 9.63 | 15.03 | 29.85 | 10.24 | 16.12 | 34.58 | |
Cosine | 12.52 | 17.43 | 31.89 | 15.58 | 18.11 | 36.64 |
Alexnet+ Max | Alexnet+ Data Aug. | Alexnet+ G-RLBP | ZF-5net+ Max | ZF-5net+ Data Aug. | ZF-5net+ G-RLBP | ||
---|---|---|---|---|---|---|---|
Chi Square | 67.97 | 65.79 | 65.85 | 66.41 | 67.41 | 68.52 | |
Euclidean | 65.77 | 66.83 | 67.84 | 68.02 | 68.12 | 69.88 | |
Cosine | 64.92 | 66.32 | 69.44 | 70.38 | 71.44 | 72.52 | |
Chi Square | 30.02 | 36.42 | 44.51 | 34.69 | 40.01 | 49.42 | |
Euclidean | 28.85 | 36.11 | 40.14 | 30.05 | 38.83 | 48.33 | |
Cosine | 31.58 | 37.23 | 42.28 | 33.67 | 39.97 | 48.87 | |
Chi Square | 21.87 | 27.54 | 39.96 | 21.43 | 28.82 | 43.22 | |
Euclidean | 20.63 | 26.63 | 36.58 | 19.85 | 25.44 | 38.16 | |
Cosine | 23.38 | 29.36 | 38.74 | 22.36 | 27.87 | 39.55 | |
Chi Square | 9.67 | 14.11 | 22.13 | 11.48 | 14.92 | 20.65 | |
Euclidean | 5.96 | 12.30 | 18.85 | 8.82 | 12.14 | 17.52 | |
Cosine | 11.20 | 13.04 | 19.63 | 10.20 | 13.49 | 21.34 |
GoogleNet+ Max | GoogleNet+ Ave. Filter | GoogleNet+ BM3D | GoogleNet+ Data Aug. | GoogleNet+ GRLBP | ||
---|---|---|---|---|---|---|
Chi Square | 88.51 | 87.24 | 88.43 | 90.12 | 92.54 | |
Euclidean | 86.32 | 85.37 | 87.57 | 89.45 | 92.33 | |
Cosine | 89.76 | 88.16 | 89.21 | 91.12 | 93.69 | |
Chi Square | 50.27 | 57.46 | 87.28 | 60.63 | 87.47 | |
Euclidean | 48.12 | 56.10 | 86.14 | 59.84 | 85.63 | |
Cosine | 51.48 | 57.23 | 87.02 | 62.01 | 87.76 | |
Chi Square | 38.65 | 44.76 | 61.07 | 47.21 | 71.22 | |
Euclidean | 38.04 | 43.02 | 59.11 | 46.33 | 70.91 | |
Cosine | 39.87 | 45.93 | 61.94 | 48.88 | 72.51 | |
Chi Square | 18.59 | 20.12 | 40.46 | 23.14 | 50.14 | |
Euclidean | 16.49 | 19.43 | 39.17 | 22.07 | 48.35 | |
Cosine | 19.06 | 21.56 | 40.89 | 24.78 | 51.55 |
GoogleNet+ Max | GoogleNet+ Ave. Filter | GoogleNet+ BM3D | GoogleNet+ Data Aug. | GoogleNet+ GRLBP | ||
---|---|---|---|---|---|---|
Chi Square | 70.22 | 69.15 | 69.34 | 72.10 | 74.87 | |
Euclidean | 67.89 | 67.23 | 69.21 | 70.03 | 73.46 | |
Cosine | 71.83 | 69.47 | 70.07 | 73.14 | 76.17 | |
Chi Square | 39.88 | 46.14 | 69.12 | 50.64 | 70.78 | |
Euclidean | 36.56 | 45.28 | 69.09 | 48.73 | 70.21 | |
Cosine | 40.14 | 46.93 | 70.42 | 50.26 | 71.38 | |
Chi Square | 25.11 | 30.57 | 46.74 | 36.65 | 57.98 | |
Euclidean | 25.52 | 29.42 | 46.22 | 35.49 | 57.35 | |
Cosine | 26.77 | 31.61 | 47.91 | 37.82 | 59.01 | |
Chi Square | 14.40 | 16.28 | 30.03 | 18.17 | 42.74 | |
Euclidean | 13.29 | 14.93 | 29.83 | 17.50 | 40.37 | |
Cosine | 15.32 | 16.11 | 31.14 | 19.59 | 43.83 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Ding, Y.; Li, B.; Yuan, X. Deep CNNs with Robust LBP Guiding Pooling for Face Recognition. Sensors 2018, 18, 3876. https://doi.org/10.3390/s18113876
Ma Z, Ding Y, Li B, Yuan X. Deep CNNs with Robust LBP Guiding Pooling for Face Recognition. Sensors. 2018; 18(11):3876. https://doi.org/10.3390/s18113876
Chicago/Turabian StyleMa, Zhongjian, Yuanyuan Ding, Baoqing Li, and Xiaobing Yuan. 2018. "Deep CNNs with Robust LBP Guiding Pooling for Face Recognition" Sensors 18, no. 11: 3876. https://doi.org/10.3390/s18113876
APA StyleMa, Z., Ding, Y., Li, B., & Yuan, X. (2018). Deep CNNs with Robust LBP Guiding Pooling for Face Recognition. Sensors, 18(11), 3876. https://doi.org/10.3390/s18113876