Experimental Determination of TDR Calibration Relationship for Pyroclastic Ashes of Campania (Italy)
Abstract
:1. Introduction
2. Principles of TDR
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Campbell, J.E. Dielectric properties and influence of conductivity in soils at one to fifty megahertz. Soil Sci. Soc. Am. J. 1990, 54, 332–341. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurement in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Jones, S.B.; Wraith, J.M.; Or, D. Time domain reflectometry measurement principles and applications. Hydrol. Process. 2002, 16, 141–153. [Google Scholar] [CrossRef]
- Mollo, L.; Greco, R. Moisture measurements in masonry materials by time domain reflectometry. J. Mater. Civ. Eng. 2011, 23, 441–444. [Google Scholar] [CrossRef]
- Agliata, R.; Mollo, L.; Greco, R. Use of TDR to compare rising damp in three tuff walls made with different mortars. J. Mater. Civ. Eng. 2017, 29. [Google Scholar] [CrossRef]
- Ponizovsky, A.A.; Chudinova, S.M.; Pachepsky, Y.A. Performance of TDR calibration models as affected by soil texture. J. Hydrol. 1999, 218, 35–43. [Google Scholar] [CrossRef]
- Roth, C.H.; Malicki, M.A.; Plagge, R. Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. J. Soil Sci. 1992, 43, 1–13. [Google Scholar] [CrossRef]
- Schaap, M.G.; De Lange, L.; Heimovaara, T.J. TDR calibration of organic forest floor media. Soil Technol. 1997, 11, 205–217. [Google Scholar] [CrossRef]
- Weitz, A.M.; Grauel, W.T.; Keller, M.; Veldkamp, E. Calibration of time domain reflectometry technique using undisturbed soil samples from humid tropical soils of volcanic origin. Water Resour. Res. 1997, 33, 1241–1249. [Google Scholar] [CrossRef] [Green Version]
- Malicki, M.A.; Plagge, R.; Roth, C.H. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Soil Sci. 1996, 47, 357–366. [Google Scholar] [CrossRef]
- Whalley, W.R.; Leeds-Harrison, P.B.; Whitmore, A.P.; Sarker, P.K. Effect of aggregate size on the water content estimated with the time domain reflectance (TDR). Int. Agrophys. 2004, 18, 181–187. [Google Scholar]
- Regalado, C.M.; Munoz Carena, R.; Socorro, A.R.; Hernandez Moreno, J.M. Time domain reflectometry models as a tool to understand the dielectric response of volcanic soils. Geoderma 2003, 117, 313–330. [Google Scholar] [CrossRef]
- Greco, R.; Guida, A.; Damiano, E.; Olivares, L. Soil water content and suction monitoring in model slopes for shallow flowslides early warning applications. Phys. Chem. Earth 2010, 35, 127–136. [Google Scholar] [CrossRef]
- Rolandi, G.; Bellucci, F.; Heizler, M.T.; Belkin, H.E.; De Vivo, B. Tectonic controls on the genesis of ignimbrites from the Campanian volcanic zone, southern Italy. Mineral. Petrol. 2003, 79, 3–31. [Google Scholar] [CrossRef]
- Di Crescenzo, G.; Santo, A. Debris slides–rapid earth flows in the carbonate massifs of the Campania region (Southern Italy): Morphological and morphometric data for evaluating triggering susceptibility. Geomorphology 2005, 66, 255–276. [Google Scholar] [CrossRef]
- Del Prete, M.; Guadagno, F.M.; Hawkins, A.B. Preliminary report on the landslides of 5 May 1998, Campania, southern Italy. Bull. Eng. Geol. Environ. 1998, 57, 113–129. [Google Scholar] [CrossRef]
- De Vita, P.; Di Clemente, E.; Rolandi, M.; Celico, P. Engineering geological Models of the initial landislides occurred on the 30 April 2006 at the mount di Vezzi (Ischia Island, Italy). Ital. J. Eng. Geol. Environ. 2007, 2, 119–141. [Google Scholar]
- Cascini, L.; Cuomo, S.; Guida, D. Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy. Eng. Geol. 2008, 96, 107–125. [Google Scholar] [CrossRef]
- Sorbino, G.; Nicotera, M.V. Unsaturated soil mechanics in rainfall-induced flow landslides. Eng. Geol. 2013, 165, 105–135. [Google Scholar] [CrossRef]
- Dasberg, S.; Dalton, F.N. Time domain reflectometry field measurement of soil water content and electrical conductivity. Soil Sci. Soc. Am. J. 1985, 49, 293–297. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L. Measurement of soil water content using TDR: A field evaluation. Soil Sci. Soc. Am. J. 1985, 49, 19–24. [Google Scholar] [CrossRef]
- Germann, P.F.; Di Pietro, L.; Singh, V.P. Momentum of flow in soils assessed with TDR moisture readings. Geoderma 1997, 80, 153–168. [Google Scholar] [CrossRef]
- Greco, R. Soil water content inverse profiling from single TDR waveforms. J. Hydrol. 2006, 317, 325–339. [Google Scholar] [CrossRef]
- Greco, R.; Guida, A. Determinazione sperimentale del legame tra permettività dielettrica e contenuto d’acqua in piroclastici campane. In Proceedings of the Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Palermo, Italy, 14–17 September 2010. [Google Scholar]
- Tarantino, A.; Pozzato, A. Strumenti per il monitoraggio della zona non satura. Riv. Ital. Geotec. 2008, 3, 109–125. [Google Scholar]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Ledieu, J.P.; De Ridder, P.; De Clerck, P.; Dautrebande, S. A method of measuring soil moisture by time domain reflectometry. J. Hydrol. 1986, 88, 319–328. [Google Scholar] [CrossRef]
- Jacobsen, O.H.; Schjonning, P. Comparison of TDR calibration functions for soil water determination. In Proceedings of the Symposium: Time Domain Reflectometry Applications in Soil Science; Petersen, L.W., Jacobsen, O.H., Eds.; Danish Institute of Plant and Soil Sci.: Lyngby, Denmark, 1995; Volume 3, pp. 25–33. [Google Scholar]
- Young, M.H.; Fleming, J.B.; Wierenga, P.J.; Warrick, A.W. Rapid laboratory calibration of time domain reflectometry using upward infiltration. Soil Sci. Soc. Am. J. 1997, 61, 707–712. [Google Scholar] [CrossRef]
- Tomer, M.D.; Clothier, B.E.; Vogeler, I.; Green, S. A dielectric–water content relationship for sandy volcanic soils in New Zealand. Soil Sci. Soc. Am. J. 1999, 63, 777–781. [Google Scholar] [CrossRef]
- Persson, M.; Berndtsson, R.; Sivakumar, B. Using Neural networks for calibration of time domain reflectometry measurements. Hydrol. Sci. J. 2001, 46, 389–398. [Google Scholar] [CrossRef]
- Regalado, C.M. A physical interpretation of logarithmic TDR calibration equations of volcanic soils and their solid fraction permittivity based on Lichtenecker’s mixing formula. Geoderma 2004, 123, 41–50. [Google Scholar] [CrossRef]
- Zakri, T.; Laurent, J.P.; Vauclin, M. Theoretical evidence of the Lichtenecker’s mixture formulae based on the effective medium theory. J. Phys. D Appl. Phys. 1998, 31, 1589–1594. [Google Scholar] [CrossRef]
- Roth, K.; Schulin, R.; Fluhler, H.; Attinger, W. Calibration of Time Domain Reflectometry for Water Content Measurement Using a Composite Dielectric Approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Dasberg, S.; Hopmans, J.W. Time Domain Reflectometry Calibration for Uniformly and Nonuniformly Wetted Sandy and Clayey Loam Soils. Soil Sci. Soc. Am. J. 1992, 56, 1341–1345. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil: Part II. Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46. [Google Scholar] [CrossRef]
- Dirksen, C.E.; Dasberg, S.I. Improved Calibration of Time Domain Reflectometry Soil Water Content Measurements. Soil Sci. Soc. Am. J. 1993, 57, 660–667. [Google Scholar] [CrossRef]
- Olivares, L.; Picarelli, L. Shallow flowslides triggered by intense rainfalls on natural slopes covered by loose unsaturated pyroclastic soils. Géotechnique 2003, 53, 283–287. [Google Scholar] [CrossRef]
- Scognamiglio, S.; Basile, A.; Calcaterra, D.; Iamarino, M.; Langella, G.; Moretti, P.; Vingiani, S.; Terribile, F. Andic soils and flow-like landslides: Cause-effect evidence from Italy. Land Degrad. Dev. 2018. [Google Scholar] [CrossRef]
- Heimovaara, T.J. Design of triple-wire time domain reflectometry probes in practice and theory. Soil Sci. Soc. Am. J. 1993, 57, 1410–1417. [Google Scholar] [CrossRef]
- Dasberg, S.; Bielorai, H.; Erner, Y.; Barum, M. The effect of saline irrigation water on Shamouti oranges. In Proceedings of the IV International Symposium on Water Supply and Irrigation in the Open and under Protected Cultivation, Padova, Italy, 26–28 August 1985; International Society for Horticultural Science: Leuven, Belgium, 1985. [Google Scholar] [CrossRef]
- Todoroff, P.; Langellier, P. Comparison of empirical and partly deterministic methods of time domain reflectometry calibration, based on a study of two tropical soils. Soil Tillage Res. 1998, 45, 325–340. [Google Scholar] [CrossRef]
- Adamo, P.; Zampella, M.; Gianfreda, L.; Renella, G.; Rutigliano, F.A.; Terribile, F. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part I. Trace element speciation in relation to soil properties. Environ. Pollut. 2006, 144, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Terribile, F.; Basile, A.; De Mascellis, R.; Iamarino, M.; Magliulo, P.; Pepe, S.; Vingiani, S. Landslide processes and Andosols: The case study of the Campania region, Italy. In Soils of Volcanic Regions in Europe; Arnalds, Ó., Óskarsson, H., Bartoli, F., Buurman, P., Stoops, G., García-Rodeja, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Damiano, E.; Olivares, L.; Picarelli, L. Steep-slope monitoring in unsaturated pyroclastic soils. Eng. Geol. 2012, 137–138, 1–12. [Google Scholar] [CrossRef]
Sample | γs (g/cm3) | dmax (mm) |
---|---|---|
A—Sarno | 2.621 | 1.4 < d < 2.36 |
C—Sarno | 2.542 | 1.4 < d < 2.36 |
E—Sarno | 2.613 | 1.4 < d < 2.36 |
n | Soil A | Soil E | Soil C | |||
---|---|---|---|---|---|---|
θ (m3/m3) | ε | θ (m3/m3) | ε | θ (m3/m3) | ε | |
0.50 | 0.05 | 3.26 | 0.05 | 3.46 | 0.05 | 3.12 |
0.10 | 4.26 | 0.10 | 4.76 | 0.10 | 4.11 | |
0.15 | 6.03 | 0.15 | 6.17 | 0.12 | 4.72 | |
0.20 | 8.42 | 0.20 | 9.01 | 0.15 | 5.64 | |
0.22 | 9.90 | 0.23 | 10.20 | 0.20 | 7.82 | |
0.25 | 10.95 | 0.25 | 10.89 | 0.22 | 9.07 | |
0.27 | 13.98 | 0.25 | 12.44 | 0.25 | 10.46 | |
0.30 | 17.40 | 0.28 | 14.66 | 0.30 | 17.80 | |
0.32 | 19.80 | 0.32 | 20.72 | 0.36 | 22.67 | |
0.35 | 21.76 | 0.35 | 23.09 | 0.38 | 23.66 | |
0.38 | 22.89 | 0.37 | 24.27 | 0.40 | 24.55 | |
0.41 | 25.72 | 0.39 | 25.53 | 0.42 | 26.21 | |
0.43 | 24.59 | 0.45 | 27.10 | |||
0.43 | 28.21 | |||||
0.45 | 25.46 | |||||
0.55 | 0.05 | 3.04 | 0.05 | 2.83 | 0.05 | 2.74 |
0.10 | 3.80 | 0.08 | 3.43 | 0.10 | 3.93 | |
0.12 | 4.19 | 0.10 | 4.45 | 0.15 | 5.88 | |
0.15 | 6.05 | 0.13 | 5.07 | 0.17 | 7.21 | |
0.20 | 8.57 | 0.15 | 6.30 | 0.20 | 8.66 | |
0.22 | 8.57 | 0.18 | 6.99 | 0.22 | 10.76 | |
0.25 | 12.42 | 0.20 | 8.54 | 0.25 | 12.22 | |
0.27 | 11.81 | 0.23 | 9.80 | 0.26 | 13.53 | |
0.30 | 14.82 | 0.25 | 11.41 | 0.27 | 14.91 | |
0.35 | 21.16 | 0.26 | 12.36 | 0.30 | 16.06 | |
0.39 | 21.84 | 0.28 | 14.20 | 0.33 | 20.10 | |
0.41 | 23.69 | 0.29 | 16.18 | 0.35 | 22.46 | |
0.30 | 17.67 | 0.37 | 23.51 | |||
0.35 | 21.87 | |||||
0.38 | 21.42 | |||||
0.40 | 23.24 | |||||
0.42 | 25.59 | |||||
0.44 | 26.37 | |||||
0.45 | 33.42 | |||||
0.60 | 0.05 | 2.61 | 0.05 | 3.01 | 0.05 | 2.80 |
0.10 | 3.53 | 0.10 | 3.77 | 0.10 | 3.87 | |
0.12 | 4.09 | 0.17 | 5.99 | 0.15 | 5.85 | |
0.15 | 5.04 | 0.25 | 11.38 | 0.18 | 8.70 | |
0.18 | 7.30 | 0.20 | 9.71 | |||
0.20 | 7.88 | 0.23 | 12.36 | |||
0.22 | 9.15 | 0.25 | 15.57 | |||
0.25 | 11.46 | 0.27 | 16.66 | |||
0.27 | 14.54 | 0.30 | 17.45 | |||
0.30 | 18.79 | 0.32 | 18.87 |
εs | εw | εa | α | θbw | εbw |
---|---|---|---|---|---|
5 | 78.5 | 1 | 0.5 | 0.054 | 3.2 |
n | Diksen and Dasberg, 1993 | Dobson et al., 1985 | Roth et al., 1990 |
---|---|---|---|
0.5 | 6.07 | 3.90 | 2.08 |
0.55 | 6.22 | 3.67 | 1.97 |
0.6 | 5.13 | 3.14 | 1.92 |
εs | εbw | θbw | α |
---|---|---|---|
5.68 | 1.06 | 0.086 | 0.82 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capparelli, G.; Spolverino, G.; Greco, R. Experimental Determination of TDR Calibration Relationship for Pyroclastic Ashes of Campania (Italy). Sensors 2018, 18, 3727. https://doi.org/10.3390/s18113727
Capparelli G, Spolverino G, Greco R. Experimental Determination of TDR Calibration Relationship for Pyroclastic Ashes of Campania (Italy). Sensors. 2018; 18(11):3727. https://doi.org/10.3390/s18113727
Chicago/Turabian StyleCapparelli, Giovanna, Gennaro Spolverino, and Roberto Greco. 2018. "Experimental Determination of TDR Calibration Relationship for Pyroclastic Ashes of Campania (Italy)" Sensors 18, no. 11: 3727. https://doi.org/10.3390/s18113727
APA StyleCapparelli, G., Spolverino, G., & Greco, R. (2018). Experimental Determination of TDR Calibration Relationship for Pyroclastic Ashes of Campania (Italy). Sensors, 18(11), 3727. https://doi.org/10.3390/s18113727