Nondestructive Inspection of Reinforced Concrete Utility Poles with ISOMAP and Random Forest
Abstract
:1. Introduction
2. Experimental Setup
3. Proposed System
3.1. The Flowchart of Our Proposed System
3.2. ISOMAP
Deciding the Number of Dimensions for the ISOMAP Algorithm
3.3. Random Forest
4. Results and Discussion
4.1. Performance Evaluation of Our Classifier
4.2. Comparison of Random forest with SVM and Decision Trees on Our Data
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kliukas, R.; Daniunas, A.; Gribniak, V.; Lukoseviciene, O.; Vanagas, E.; Patapavicius, A. Half a century of reinforced concrete electric poles maintenance: Inspection, field-testing, and performance assessment. Struct. Infrastruct. Eng. 2018, 14, 1221–1232. [Google Scholar] [CrossRef]
- Baraneedaran, S.; Gad, E.F.; Flatley, I.; Kamiran, A.; Wilson, J.L. Review of In-Service Assessment of Timber Poles. In Proceedings of the Australian Earthquake Engineering Society (AEES), Newcastle, New South Wales, Australia, 11–13 December 2009. [Google Scholar]
- Miszczyk, A.; Szocinski, M.; Darowicki, K. Restoration and preservation of the reinforced concrete poles of fence at the former Auschwitz concentration and extermination camp. Case Stud. Constr. Mater. 2016, 4, 42–48. [Google Scholar] [CrossRef]
- Cairns, J.; Plizzari, G.A.; Du, Y.; Law, D.W.; Franzoni, C. Mechanical properties of corrosion-damaged reinforcement. ACI Mater. J. 2005, 102, 256. [Google Scholar]
- Stewart, M.G. Spatial and time-dependent reliability modelling of corrosion damage, safety and maintenance for reinforced concrete structures. Struct. Infrastruct. Eng. 2012, 8, 607–619. [Google Scholar] [CrossRef]
- Ying, L.; Vrouwenvelder, T. Service life prediction and repair of concrete structures with spatial variability. Heron 2007, 52, 251–267. [Google Scholar]
- Doukas, H.; Karakosta, C.; Flamos, A.; Psarras, J. Electric power transmission: An overview of associated burdens. Int. Energy Res. 2011, 35, 979–988. [Google Scholar] [CrossRef]
- Val, D.; Stewart, M.G. Reliability Assessment of Ageing Reinforced Concrete Structures—Current Situation and Future Challenges. Struct. Eng. Int. 2009, 19, 211–219. [Google Scholar] [CrossRef]
- Breysse, D. Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques; Springer: Talence, France, 2012. [Google Scholar]
- No, T.C.S. Guidebook on Non-Destructive Testing of Concrete Structures. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/TCS-17_web.pdf (accessed on 12 October 2018).
- Helal, J.; Sofi, M.; Mendis, P. Non-Destructive Testing of Concrete: A Review of Methods. Electron. J. Struct. Eng. 2015, 14, 97–105. [Google Scholar]
- Davis, A.G. Nondestructive Test Methods for Evaluation of Concrete in Structures. Available online: https://pdfs.semanticscholar.org/de1b/9bf772ab6e63b9a7f90254ef8ae94765f3c5.pdf (accessed on 12 October 2018).
- Szymanik, B.; Frankowski, P.K.; Chady, T.; John Chelliah, C.R.A. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors. Sensors 2016, 16, 234. [Google Scholar] [CrossRef] [PubMed]
- Hermanek, P.; Carmignato, S. Reference object for evaluating the accuracy of porosity measurements by X-ray computed tomography. Case Stud. Nondestruct. Test. Eval. 2016, 6, 122–127. [Google Scholar] [CrossRef]
- Schickert, M.; Tümmler, U. Initial Measurement Results of an Automated Ultrasonic Scanning and Imaging System. In Proceedings of the 7th International Symposium on Non Destructive Testing in Civil Engineering, Nantes, France, 30 June–3 July 2009. [Google Scholar]
- Rucka, M.; Wilde, K. Ultrasound monitoring for evaluation of damage in reinforced concrete. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Makar, J.; Desnoyers, R. Magnetic field techniques for the inspection of steel under concrete cover. NDT E Int. 2001, 34, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Benyahia, A.K.; Ghrici, M.; Kenai, S.; Breysse, D.; Sbartaï, Z.M. Analysis of the relationship between nondestructive and destructive testing of low concrete strength in new structures. Asian J. Civ. Eng. 2017, 18, 191–205. [Google Scholar]
- Dackermann, U.; Yu, Y.; Niederleithinger, E.; Li, J.; Wiggenhauser, H. Condition Assessment of Foundation Piles and Utility Poles Based on Guided Wave Propagation Using a Network of Tactile Transducers and Support Vector Machines. Sensors 2017, 17, 2938. [Google Scholar] [CrossRef] [PubMed]
- Dackermann, U.; Yu, Y.; Li, J.; Niederleithinger, E.; Wiggenhauser, H. A new non-destructive testing system based on narrow-band frequency excitation for the condition assessment of pole structures using frequency response functions and principle component analysis. In Proceedings of the International Symposium Non-Destructive Testing in Civil Engineering, Berlin, Germany, 15–17 September 2015. [Google Scholar]
- SMART C&S. Available online: http://smartcs.co.kr/ (accessed on 12 October 2018).
- Tenenbaum, J.B.; de Silva, V.; Langford, J.C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000, 290, 2319–2323. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Osuna, E.; Freund, R.; Girosi, F. Support Vector Machines: Training and Applications; Massachusetts Institute of Technology: Cambridge, MA, USA, 1997; Available online: https://dspace.mit.edu/handle/1721.1/7290 (accessed on 12 October 2018).
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Van Der Maaten, L.; Postma, E.; Jaap Van Den, H. Dimensionality Reduction: A Comparative Review. Available online: http://www.math.chalmers.se/Stat/Grundutb/GU/MSA220/S18/DimRed2.pdf (accessed on 12 October 2018).
- Jeong, M.; Choi, J.H.; Koh, B.H. Isomap-based damage classification of cantilevered beam using modal frequency changes. Struct. Control Health Monit. 2014, 21, 590–602. [Google Scholar] [CrossRef]
- Rivest, R.L.; Cormen, T.H.; Leiserson, C.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Liang, Y.M.; Shih, S.W.; Shih, A.C.C.; Liao, H.Y.M.; Lin, C.C. Unsupervised Analysis of Human Behavior Based on Manifold Learning. Available online: https://www.researchgate.net/profile/Sheng-Wen_Shih/publication/221373574_Unsupervised_Analysis_of_Human_Behavior_based_on_Manifold_Learning/links/02bfe50cf22736cb7a000000.pdf (accessed on 12 October 2018).
- Dietterich, T.G. Ensemble Methods in Machine learning. Available online: https://link.springer.com/chapter/10.1007/3-540-45014-9_1 (accessed on 12 October 2018).
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth: Belmont, CA, USA, 1984. [Google Scholar]
- Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How Many Trees in a Random Forest? Available online: https://link.springer.com/chapter/10.1007/978-3-642-31537-4_13 (accessed on 12 October 2018).
- Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer: New York, NY, USA, 2001. [Google Scholar]
- Caruana, R.; Niculescu-Mizil, A. An Empirical Comparison of Supervised Learning Algorithms. In Proceedings of the 23rd International Conference on Machine learning, Pittsburgh, PA, USA, 25–29 June 2006. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Sasaki, Y. The Truth of the F-Measure. Available online: https://www.cs.odu.edu/~mukka/cs795sum09dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf (accessed on 12 October 2018).
- Lewis, D.D. Evaluating Text Categorization. Available online: http://www.aclweb.org/anthology/H91-1061 (accessed on 12 October 2018).
Sensor and DAQ | |
---|---|
ADC Resolution | 16 bit |
ADC Input Channel | 8 Differential Input Channels |
ADC Sampling rate | 50 S/s |
Main Cable | |
Length | 6 m |
Diameter | 22 mm |
No of Trees | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 |
Accuracy | 0.93 | 0.94 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.98 | 0.98 |
Predicated Safe Signals | Predicated Crack Signals | |
---|---|---|
Actual Safe Signals | TP = 25 | FN = 0 |
Actual Crack Signals | FP = 1 | TN = 4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, S.; Jeong, M.; Lee, W. Nondestructive Inspection of Reinforced Concrete Utility Poles with ISOMAP and Random Forest. Sensors 2018, 18, 3463. https://doi.org/10.3390/s18103463
Ullah S, Jeong M, Lee W. Nondestructive Inspection of Reinforced Concrete Utility Poles with ISOMAP and Random Forest. Sensors. 2018; 18(10):3463. https://doi.org/10.3390/s18103463
Chicago/Turabian StyleUllah, Saeed, Minjoong Jeong, and Woosang Lee. 2018. "Nondestructive Inspection of Reinforced Concrete Utility Poles with ISOMAP and Random Forest" Sensors 18, no. 10: 3463. https://doi.org/10.3390/s18103463
APA StyleUllah, S., Jeong, M., & Lee, W. (2018). Nondestructive Inspection of Reinforced Concrete Utility Poles with ISOMAP and Random Forest. Sensors, 18(10), 3463. https://doi.org/10.3390/s18103463