Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan
Abstract
:1. Introduction
2. UAS System Selection and Design
3. Processing Approach
3.1. Camera Calibration Approach for XM6
3.2. Data Collection
3.3. Generation of Thermal Orthoimages
3.3.1. GNSS-Supported Position and Orientation
Establishing a Precise Flying Trajectory
GNSS-Supported Position and Orientation of Thermal Images
3.3.2. Generation of DSM and Thermal Orthoimages
4. Results and Discussions
4.1. Study Test Area and Waypoint Design
4.2. Data Collection
4.3. Generation of Thermal Orthoimages
4.3.1. GNSS-Supported Position and Orientation
Establishing a Precise Flying Trajectory
GNSS-Supported Position and Orientation of Thermal Images
4.3.2. Generation of DSM and Thermal Orthoimages
4.4. Further Investigation and Discussion
5. Conclusions and Suggestion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tilling, R.I. Volcanic hazards: Short course in geology. In Proceedings of the 28th International Geological Congress, Washington, DC, USA, 9–19 August 1989; Volume 1, p. 123. [Google Scholar]
- Zeni, L.; Minardo, A.; Petrillo, Z.; Piochi, M.; Scarpa, R.; Bernini, R. Distributed optical fiber sensors: An approach for monitoring the thermal gradient at the Campi Flegrei caldera. Geophys. Res. Abstr. 2007, 9, 04074. [Google Scholar]
- Sudo, Y.; Hurst, A.W. Temperature changes at depths to 150 metres near the active crater of Aso Volcano: Preliminary analysis of seasonal and volcanic effects. J. Volcanol. Geotherm. Res. 1998, 81, 159–172. [Google Scholar] [CrossRef]
- Ambrosia, V.G.; Wegener, S.S.; Brass, J.A.; Hinkley, E. Use of Unmanned Aerial Vehicles for Fire Detection. In Proceedings of the 5th International Workshop on Remote Sensing and GIS Applications to Forest Fire Management: Fire Effects Assessment: 9–17, Universidad de Zaragoza, Zaragoza, Spain, 16–18 June 2005; ISBN 84-96214-52-4. [Google Scholar]
- Berni, J.; Zarco-Tejada, P.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef]
- Miraliakbari, A.; Hahn, M.; Arefi, H.; Engels, J. Development of a Low–Cost Sensor System for Use on Gyrocopters; International Society of Photogrammetry and Remote Sensing, Commission I: Calgay, AB, Canada, 2010. [Google Scholar]
- Hartmann, W.; Tilch, S.; Eisenbeiss, H.; Schindler, K. Determination of the UAS position by automatic processing of thermal images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. In Proceedings of the 2012 XXII ISPRS Congress, Melbourne, Australia, 25 August–1 September 2012; Volume XXXIX-B6. [Google Scholar]
- Řehák, M.; Pavelka, K. Using of uav for photogrammetry and thermal imaging. In Proceedings of the 33nd Asian Conference on Remote Sensing, ACRS2012, CD-Proceedings, Pattaya, Thailand, 22–26 November 2012. [Google Scholar]
- Nishar, A.; Richards, S.; Breen, D.; Robertson, J.; Breen, B. Thermal infrared imaging of geothermal environments and by an unmanned aerial vehicle (UAV): A case study of the Wairakei—Tauhara geothermal field, Taupo, New Zealand. Renew. Energy 2016, 86, 1256–1264. [Google Scholar] [CrossRef]
- Nishar, A.; Richards, S.; Breen, D.; Robertson, J.; Breen, B. Thermal infrared imaging of geothermal environments by UAV (unmanned aerial vehicle). J. Unmanned Veh. Syst. 2016, 4, 136–145. [Google Scholar] [CrossRef]
- Harvey, M.C.; Rowland, J.V.; Luketina, K.M. Drone with Thermal Infrared Camera Provides high resolution georeferenced imagery of the Waikite Geothermal Area, New Zealand. J. Volcanol. Geotherm. Res. 2016. [Google Scholar] [CrossRef]
- Amici, S.; Turci, M.; Giammanco, S.; Spampinato, L.; Giulietti, F. UAV thermal infrared remote sensing of an Italian Mud Volcano. Adv. Remote Sens. 2013, 2, 358–364. [Google Scholar] [CrossRef]
- Mori, T.; Hashimoto, T.; Terada, A.; Yoshimoto, M.; Kazahaya, R.; Shinohara, H.; Tanaka, R. Volcanic plume measurements using a UAV for the 2014 Mt. Ontake eruption. Earth Planets Space 2016, 68, 49. [Google Scholar] [CrossRef]
- McGonigle, A.J.S.; Aiuppa, A.; Giudice, G.; Tamburello, G.; Hodson, A.J.; Gurrieri, S. Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes. Geophys. Res. Lett. 2008, 35, L06303. [Google Scholar] [CrossRef]
- Xi, X.; Johnson, M.S.; Jeong, S.; Fladeland, M.; Pieri, D.; Diaz, J.A.; Bland, G.L. Constraining the sulfur dioxide degassing flux from Turrialba volcano, Costa Rica using unmanned aerial system measurements. J. Volcanol. Geotherm. Res. 2016, 325, 110–118. [Google Scholar] [CrossRef]
- Wolf, P.R.; Dewitt, B.A.; Wilkinson, B.E. Elements of Photogrammetry with Applications in GIS, 4th ed.; The McGraw-Hill: Taipei, Taiwan, 2014. [Google Scholar]
- Baertlein, H.; Carlson, B.; Eckels, R. A High-Performance, High-Accuracy RTK GPS Machine Guiadance System. GPS Solut. 2000, 3, 4–11. [Google Scholar] [CrossRef]
- Yang, T.F.; Sano, Y.; Song, S.R. 3He/4He ratios of fumaroles and bubbling gases of hot springs in Tatun Volcano Group, North Taiwan. Nuovo Cimento Della Societa Italiana Di Fisica 1999, C22, 281–286. [Google Scholar]
- Lin, C.H.; Konstantinou, K.I.; Pu, H.C.; Hsu, C.C.; Lin, Y.M.; You, S.H.; Huang, Y.P. Preliminary results of seismic monitoring at Tatun volcanic area of northern Taiwan. Terr. Atmos. Ocean. Sci. 2005, 16, 563–577. [Google Scholar] [CrossRef]
- Lin, C.H.; Konstantinou, K.I.; Pu, H.C.; Hsu, C.C.; Lin, Y.M.; You, S.H.; Huang, Y.P. Preliminary analysis of volcanoseismic signals recorded at the Tatun Volcano Group, northern Taiwan. Geophys. Res. Lett. 2005, 32, L10313. [Google Scholar] [CrossRef]
- Konstantinou, K.I.; Lin, C.H.; Liang, W.T. Seismicity characteristics of a potentially active Quaternary Volcano: The Tatun Volcano Group, northern Taiwan. J. Volcanol. Geotherm. Res. 2007, 160, 300–318. [Google Scholar] [CrossRef]
- Belousov, A.; Belousova, M.; Chen, C.H.; Zellmer, G.F. Deposits character and timing of recent eruptions and gravitational collapses in Tatun volcanic group, northern Taiwan: Hazard-related issues. J. Volcanol. Geotherm. Res. 2010, 191, 205–221. [Google Scholar] [CrossRef]
- Murase, M.; Lin, C.H.; Kimata, F.; Mori, H.; Pu, H.C. Volcano-hydrothermal activity detected by precise levelling surveys at the Tatun volcano group in Northern Taiwan during 2006–2013. J. Volcanol. Geotherm. Res. 2014, 286, 30–40. [Google Scholar] [CrossRef]
- Lin, C.H.; Pu, H.C. Very-long-period seismic signals at the Tatun volcano group, northern Taiwan. J. Volcanol. Geotherm. Res. 2016, 328, 230–236. [Google Scholar] [CrossRef]
- Zellmer, G.F.; Rubin, K.H.; Miller, C.A.; Shellnutt, J.G.; Belousov, A.; Belousov, M. Resolving discordant U-Th-Ra ages: Constraints on petrogenetic processes of recent effusive eruptions at Tatun Vlcano Group, northern Taiwan. In Chemical, Physical and Temporal Evolution of Magmatic Systems; Special Publications, 422; Caricchi, L., Blundy, J.D., Eds.; Geological Society: London, UK, 2015. [Google Scholar]
- Harris, A. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2014; p. 83. Available online: https://books.google.com.tw/books?id=xY4oYzbH0ooC&pg=PA83&lpg=PA83&dq=emissivity+sulfur&source=bl&ots=TFSaxqI3ec&sig=UD_eZtZFZ-B-U74ZUvvGl_2hhK8&hl=zhTW&sa=X&ved=0ahUKEwjj6_ST4dLUAhWMH5QKHZk8DZAQ6AEIKjAE#v=onepage&q=emissivity%20sulfur&f=false (accessed on 20 June 2017).
3-Axis Rate Gyro |
---|
Sensing Range ≥ ±250°/s |
Resolution Per-axis ≥16 bit |
Data Update Rate ≥100 Hz |
3-axis G-sensor |
Sensing Range ≥ ±6 g |
Resolution Per-axis ≥16 bit |
Data Update Rate ≥100 Hz |
3-axis m-sensor |
Sensing Range ≥ ±6 gauss |
Resolution ≤ 0.195 milli gauss/count |
Data Update Rate ≥100 Hz |
Detector | |
Detector type | uncooled FPA |
Spectral band | 7.5~14 μm |
Resolution | 640 × 480 pixels |
Pixel size | 17 μm |
Max frame rate | 25 Hz |
Measurement | |
Temperature measurement range | −20–150 °C/−20–300 °C |
Accuracy | ±2 °C or ±2% |
Thermal sensitivity(NETD) | <60 mk |
Lens | |
Focal length | 25 mm |
Field of view | 25° × 19° |
Spatial resolution | 0.68 mrad |
Date | Time (s) | E (m) | N (m) | H (m) | STD_E (m) | STD_N (m) | STD_H (m) |
---|---|---|---|---|---|---|---|
10 August 2016 | 10:37.7 | 305,081.615 | 2,785,308.749 | 995.531 | 0.007 | 0.007 | 0.014 |
10 August 2016 | 10:37.8 | 305,081.599 | 2,785,308.751 | 995.531 | 0.007 | 0.007 | 0.014 |
10 August 2016 | 10:37.9 | 305,081.591 | 2,785,308.746 | 995.533 | 0.005 | 0.005 | 0.010 |
10 August 2016 | 10:38.0 | 305,081.579 | 2,785,308.751 | 995.538 | 0.006 | 0.006 | 0.012 |
10 August 2016 | 10:38.1 | 305,081.566 | 2,785,308.755 | 995.545 | 0.006 | 0.006 | 0.011 |
10 August 2016 | 10:38.2 | 305,081.562 | 2,785,308.754 | 995.545 | 0.009 | 0.009 | 0.019 |
10 August 2016 | 10:38.3 | 305,081.551 | 2,785,308.748 | 995.575 | 0.007 | 0.007 | 0.014 |
10 August 2016 | 10:38.4 | 305,081.550 | 2,785,308.747 | 995.587 | 0.007 | 0.007 | 0.014 |
10 August 2016 | 10:38.5 | 305,081.538 | 2,785,308.743 | 995.601 | 0.007 | 0.007 | 0.014 |
10 August 2016 | 10:38.6 | 305,081.538 | 2,785,308.733 | 995.625 | 0.004 | 0.004 | 0.008 |
10 August 2016 | 10:38.7 | 305,081.531 | 2,785,308.728 | 995.657 | 0.008 | 0.008 | 0.016 |
10 August 2016 | 10:38.8 | 305,081.529 | 2,785,308.719 | 995.690 | 0.005 | 0.005 | 0.010 |
10 August 2016 | 10:38.9 | 305,081.527 | 2,785,308.710 | 995.740 | 0.007 | 0.007 | 0.014 |
10 August 2016 | 10:39.0 | 305,081.521 | 2,785,308.702 | 995.784 | 0.008 | 0.007 | 0.015 |
10 August 2016 | 10:39.1 | 305,081.512 | 2,785,308.681 | 995.825 | 0.005 | 0.005 | 0.010 |
10 August 2016 | 10:39.2 | 305,081.509 | 2,785,308.676 | 995.867 | 0.007 | 0.007 | 0.015 |
10 August 2016 | 10:39.3 | 305,081.499 | 2,785,308.666 | 995.923 | 0.007 | 0.007 | 0.014 |
10 August 2016 | 10:39.4 | 305,081.485 | 2,785,308.650 | 995.980 | 0.005 | 0.005 | 0.010 |
10 August 2016 | 10:39.5 | 305,081.467 | 2,785,308.639 | 996.017 | 0.008 | 0.008 | 0.015 |
10 August 2016 | 10:39.6 | 305,081.447 | 2,785,308.628 | 996.053 | 0.009 | 0.009 | 0.017 |
10 August 2016 | 10:39.7 | 305,081.432 | 2,785,308.621 | 996.111 | 0.007 | 0.007 | 0.014 |
Control Strategies and The Corresponding Observation Errors | RMSE (unit: m) of Check Points | |||
---|---|---|---|---|
E | N | E_N | H | |
A. Single-frequency GNSS observations from single-frequency calculation as air controls (GNSS observation error: 5 m in planimetry, 5 m in H height) | 25.2 | 20.5 | 32.5 | 13.9 |
B. Non-reduced GNSS observations from dual-frequency calculation as air controls (GNSS observation error: corresponding planimetric standard deviations +0.2 m in planimetry, corresponding H standard deviations +0.2 m in height) | 7.7 | 9.0 | 11.8 | 9.1 |
C. Reduced GNSS observations from dual-frequency calculation as air controls (GNSS observation error: corresponding planimetric standard deviations in planimetry, corresponding H standard deviations in height) | 6.5 | 7.5 | 9.9 | 4.8 |
D. Reduced GNSS observations from dual-frequency calculation as controls with four GCPs (GNSS observation error: corresponding planimetric standard deviations in planimetry, corresponding H standard deviations in height) GCPs: E-N planimetry: 0.28 m; H: 0.3 m) | 1.6 | 1.4 | 2.1 | 3.1 |
Difference | No. of Grid Cells | Percentage |
---|---|---|
<−5 m | 85 | 0.40% |
−5 m~−3 m | 228 | 1.08% |
−3 m~−2 m | 643 | 3.06% |
−2 m~−1 m | 1872 | 8.90% |
−1 m~1 m | 7685 | 36.52% |
1 m~2 m | 4433 | 21.07% |
2 m~3 m | 3450 | 16.40% |
3 m~5 m | 2168 | 10.30% |
>5 m | 478 | 2.27% |
Total | 21,042 | 100.00% |
Check Point | Discrepancy of Point Location Between Check Points (Unit: m) |
---|---|
1 | 0.71 |
2 | 1.18 |
3 | 0.85 |
4 | 3.17 |
5 | 1.77 |
Average | 1.54 |
RMSE | 1.78 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chio, S.-H.; Lin, C.-H. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan. Sensors 2017, 17, 1649. https://doi.org/10.3390/s17071649
Chio S-H, Lin C-H. Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan. Sensors. 2017; 17(7):1649. https://doi.org/10.3390/s17071649
Chicago/Turabian StyleChio, Shih-Hong, and Cheng-Horng Lin. 2017. "Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan" Sensors 17, no. 7: 1649. https://doi.org/10.3390/s17071649
APA StyleChio, S.-H., & Lin, C.-H. (2017). Preliminary Study of UAS Equipped with Thermal Camera for Volcanic Geothermal Monitoring in Taiwan. Sensors, 17(7), 1649. https://doi.org/10.3390/s17071649